精英家教網 > 高中數學 > 題目詳情
如圖,長度為2的線段AB夾在直二面角α-l-β的兩個半平面內,A∈α,B∈β,
且AB與平面α、β所成的角都是30°,AC⊥l,垂足為C,BD⊥l,垂足為D.
(Ⅰ)求直線AB與CD所成角的大。
(Ⅱ)求二面角C-AB-D所成平面角的余弦值.

【答案】分析:(Ⅰ)直接根據AC⊥β以及常用的結論:cosθ=cos∠ABC•cos∠DCB即可求出結果;
(Ⅱ)先建立空間直角坐標系,得到各對應點的坐標,進而求出兩個平面的法向量的坐標,最后代入向量夾角計算公式即可.
解答:解:(Ⅰ)如圖所示,連接BC,設直線AB與CD所成的角為θ,則由AC⊥β知:cosθ=cos∠ABC•cos∠DCB=,
故θ=45°;
(Ⅱ)如圖建立空間直角坐標系,則D(0,0,0),,B(1,0,0),,
所以,,設是平面ABC的法向量,則可以取
同理,是平面ABD的法向量.
設二面角C-AB-D所成的平面角為γ,則顯然γ是銳角,從而有
點評:本小題主要考查空間直線所成的角以及二面角的度量等知識,考查數形結合、化歸與轉化的數學思想方法,以及空間想象能力、推理論證能力和運算求解能力.用空間向量求二面角問題的關鍵在于求出兩個平面的法向量.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2006•廣州一模)如圖,長度為2的線段AB夾在直二面角α-l-β的兩個半平面內,A∈α,B∈β,
且AB與平面α、β所成的角都是30°,AC⊥l,垂足為C,BD⊥l,垂足為D.
(Ⅰ)求直線AB與CD所成角的大。
(Ⅱ)求二面角C-AB-D所成平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,長度為1的線段AB上有任意兩點C、D(不與A、B重合)把AB分為三條線段AC、CD、DB,設AC=x,CD=y.
(1)求這三條線段能構成三角形需滿足的條件(用x、y表示).
(2)求出這三條線段能構成三角形的概率.

查看答案和解析>>

科目:高中數學 來源:天利38套《2009高考模擬試題匯編附加試題》、數學文科 題型:044

如圖,長度為2的線段AB夾在直二面角α-l-β的兩個半平面內,A∈α,Bβ,且AB與平面α,β所成的角都是30°,ACl,垂足為CBDl,垂足為D.

(Ⅰ)求直線ABCD所成角的大小;

(Ⅱ)求二面角CABD的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:廣州一模 題型:解答題

如圖,長度為2的線段AB夾在直二面角α-l-β的兩個半平面內,A∈α,B∈β,
且AB與平面α、β所成的角都是30°,AC⊥l,垂足為C,BD⊥l,垂足為D.
(Ⅰ)求直線AB與CD所成角的大小;
(Ⅱ)求二面角C-AB-D所成平面角的余弦值.
精英家教網

查看答案和解析>>

同步練習冊答案