已知拋物線C:y2=2px,F(xiàn)為C的焦點(diǎn),F(xiàn)到準(zhǔn)線距離為2,直線l過焦點(diǎn)F且與拋物線交于A、B兩點(diǎn).
(1)求數(shù)學(xué)公式數(shù)學(xué)公式的值.
(2)若數(shù)學(xué)公式數(shù)學(xué)公式,求△ABO面積S的最小值.
(3)在(2)條件下,若S≤數(shù)學(xué)公式,求λ的范圍.

解:(1)∵焦點(diǎn)F到準(zhǔn)線距離為2,∴p=2,∴拋物線C的方程為y2=4x,F(xiàn)(1,0).
設(shè)A(x1,y1),B(x2,y2).
設(shè)直線l的方程為my=x-1,聯(lián)立消去x得到y(tǒng)2-4my-4=0,∴y1+y2=4m,y1y2=-4.
=x1x2+y1y2=(my1+1)(my2+1)+y1y2=(m2+1)y1y2+m(y1+y2)+1=-4(m2+1)+4m2+1=-3;
(2)由(1)(不妨設(shè)y1>0,y2<0)及可知:,λ>0,而,∴
S△ABO==,
===4,當(dāng)且僅當(dāng)λ=1取等號(hào),即Smin=2.
(3)由(2)可知:,
,解得
分析:(1)利用p的意義即可求出,設(shè)出直線的方程,與拋物線的方程聯(lián)立,利用根與系數(shù)的關(guān)系及向量的數(shù)量積即可求出;
(2)利用,,三角形的面積公式及基本不等式的性質(zhì)即可得出;
(3)利用(2)的結(jié)論解出即可.
點(diǎn)評(píng):熟練掌握拋物線定義p的意義、過焦點(diǎn)的直線與拋物線的相交問題轉(zhuǎn)化為一元二次方程的根與系數(shù)的關(guān)系、向量的數(shù)量積、三角形的面積公式及基本不等式的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點(diǎn). A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點(diǎn)N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點(diǎn),A為拋物線C上的動(dòng)點(diǎn),過A作拋物線準(zhǔn)線l的垂線,垂足為Q.
(1)若點(diǎn)P(0,4)與點(diǎn)F的連線恰好過點(diǎn)A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點(diǎn)M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=4x,點(diǎn)M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點(diǎn)M,不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=8x與點(diǎn)M(-2,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若
MA
MB
=0,則k=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案