對(duì)n∈N?不等式所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列(x1,y1),(x2,y2),?,(xn,yn),
求xn,yn;
(2)數(shù)列{an}滿足a1=x1,且n≥2時(shí)an=yn2證明:當(dāng)n≥2時(shí),;
(3)在(2)的條件下,試比較與4的大小關(guān)系.

(1)
(2)運(yùn)用整體的思想,作差法來得到化簡(jiǎn)證明。
(3)<4

解析試題分析:解:(1)當(dāng)n=1時(shí),(x1,y1)=(1,1)
n=2時(shí),(x2,y2)="(1,2)" (x3,y3)=(1,3)
n=3時(shí),(x4,y4)=(1,4)
n時(shí)   (xn,yn)=(1,n)
(2)由
(3)當(dāng)n=1時(shí),時(shí),成立
由(2)知當(dāng)n≥3時(shí),

=
=
=

= 得證

考點(diǎn):本試題主要是考查了數(shù)列與不等式的綜合運(yùn)用。
點(diǎn)評(píng):對(duì)于數(shù)列與不等式結(jié)合的證明試題,是個(gè)難點(diǎn),一般要用到放縮法來證明,需要同學(xué)們注意積累相關(guān)的放縮的方法。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)n∈N*,不等式數(shù)學(xué)公式所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列:(x1,y1),(x2,y2),(x3,y3),…,(xn,yn).
(1)求xn,yn;
(2)數(shù)列{an}滿足a1=x1且n≥2時(shí),數(shù)學(xué)公式,求數(shù)列{an}的前n項(xiàng)和Sn;
(3)設(shè)c1=1,當(dāng)n≥2時(shí),數(shù)學(xué)公式,且數(shù)列{cn}的前n項(xiàng)和Tn,求T99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)n∈N*,不等式所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成一列點(diǎn):(x1,y1),(x2,y2),(x3,y3),…,(xn,yn).

(Ⅰ)求xn、yn;

(Ⅱ)若an=3n+λ·(-xn)n-1·(λ為非零常數(shù)),問是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有an+1>an.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省泰安市新泰一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對(duì)n∈N*,不等式所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列:(x1,y1),(x2,y2),(x3,y3),…,(xn,yn).
(1)求xn,yn
(2)數(shù)列{an}滿足a1=x1且n≥2時(shí),,求數(shù)列{an}的前n項(xiàng)和Sn;
(3)設(shè)c1=1,當(dāng)n≥2時(shí),,且數(shù)列{cn}的前n項(xiàng)和Tn,求T99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年湖北省黃岡中學(xué)、華師一附中、鄂南高中、黃石二中、孝感高中、荊州中學(xué)、襄樊四中、襄樊五中高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

對(duì)n∈N*,不等式所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成一列點(diǎn):(x1,y1),(x2,y2),(x3,y4),…,(xn,yn
(1)求xn,yn
(2)若(λ為非零常數(shù)),問是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有an+1>an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖南省澧縣一中、岳陽(yáng)一中高三第三次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

對(duì)n∈N*,不等式所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列:(x1,y1),(x2,y2),(x3,y3),…,(xn,yn).
(1)求xn,yn;
(2)數(shù)列{an}滿足a1=x1且n≥2時(shí),,求數(shù)列{an}的前n項(xiàng)和Sn;
(3)設(shè)c1=1,當(dāng)n≥2時(shí),,且數(shù)列{cn}的前n項(xiàng)和Tn,求T99

查看答案和解析>>

同步練習(xí)冊(cè)答案