19.設(shè)A={4,5,6,7},B={x∈N|3≤x<6},則A∩B=( 。
A.{4,5,6}B.{4,5}C.{3,4,5}D.{5,6,7}

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={4,5,6,7},B={x∈N|3≤x<6},
∴A∩B={4,5},
故選:B.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(6-a)x,x≤1}\end{array}\right.$,若對于任意的兩個(gè)不相等實(shí)數(shù)x1,x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,則實(shí)數(shù)a的取值范圍是(  )
A.(1,6)B.(1,+∞)C.(3,6)D.[3,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\overrightarrow m=(\sqrt{3},2sinx),\overrightarrow n=({sin^2}x-{cos^2}x,cosx)$,函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$.
(1)求f(x)的最小正周期、對稱軸和對稱中心;
(2)設(shè)$x∈[-\frac{π}{3},\;\frac{π}{3}]$,求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A={(x,y)|x+y=1},B={(x,y)|x-y=5},則A∩B=( 。
A.{3,-2}B.{x=3,y=-2}C.{(3,-2)}D.(3,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|x2-3x-4≤0},B={x|x2-2mx+m2-9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求實(shí)數(shù)m的值;
(2)若A∩C=∅,求實(shí)數(shù)b的取值范圍;
(3)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2),
②f(x1•x2)=f(x1)+f(x2),
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,
④$f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$,
當(dāng)f(x)=lnx時(shí),上述結(jié)論中正確結(jié)論的序號是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=ax-1+4的圖象恒過定點(diǎn)P,則P點(diǎn)坐標(biāo)是(1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式|x-m|<1成立的充分不必要條件是1<x<2,則實(shí)數(shù)m的取值范圍是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在考試測評中,常用難度曲線圖來檢測題目的質(zhì)量,一般來說,全卷得分高的學(xué)生,在某道題目上的答對率也應(yīng)較高,如果是某次數(shù)學(xué)測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標(biāo)為分?jǐn)?shù)段,縱坐標(biāo)為該分?jǐn)?shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是(  )
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學(xué)生數(shù)學(xué)成績的好與壞
C.分?jǐn)?shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標(biāo)準(zhǔn)差小于第2問的得分標(biāo)準(zhǔn)差

查看答案和解析>>

同步練習(xí)冊答案