【題目】如圖是一幾何體的平面展開圖,其中四邊形為正方形,分別為的中點.在此幾何體中,給出下列結論,其中正確的結論是( )

A.平面平面B.直線平面

C.直線平面D.直線平面

【答案】ABC

【解析】

將幾何體的平面圖還原立體圖,運用線面平行的判定定理和面面平行的判定定理對四個選項進行辨析.

作出立體圖形如圖所示.連接四點構成平面.

對于,因為分別是的中點,所以.

平面,平面,所以平面.

同理,平面.又,平面,平面,

所以平面平面,故A正確;

對于,連接,設的中點為M,則M也是的中點,所以,又平面,平面,所以平面,故B正確;

對于,A中的分析知,,所以,因為平面,平面,所以直線平面,故C正確;

對于,根據(jù)C中的分析可知再結合圖形可得, ,則直線與平面不平行,故D錯誤.

故選

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(2,0),且圓C:x2+y2﹣6x+4y+4=0.

(Ⅰ)當直線過點P且與圓心C的距離為1時,求直線的方程;

(Ⅱ)設過點P的直線與圓C交于A、B兩點,若|AB|=4,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列命題:

①回歸直線恒過樣本點的中心,且至少過一個樣本點;

②兩個變量相關性越強,則相關系數(shù)就越接近于;

③對分類變量,的觀測值越小,“有關系”的把握程度越大;

④兩個模型中殘差平方和越小的模型擬合的效果越好.則正確命題的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組對晝夜溫差大小與某種子發(fā)芽多少之間的關系進行研究,下面是3月1日至5日每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù)的詳細記錄:

(1)根據(jù)3月2日至3月4日的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;

日期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均小于2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是等差數(shù)列,,是等比數(shù)列,,.

1)求數(shù)列的通項公式;

2)若,求當是偶數(shù)時,數(shù)列的前項和;

3)若,是否存在實數(shù)使得不等式對任意的恒成立?若存在,求出所有滿足條件的實數(shù),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運輸貨物到乙地,運輸成本包括燃料費用和其他費用.已知該貨輪每小時的燃料費與其速度的平方成正比,比例系數(shù)為,其他費用為每小時元,且該貨輪的最大航行速度為海里/小時.

)請將該貨輪從甲地到乙地的運輸成本表示為航行速度(海里/小時)的函數(shù).

)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司結合公司的實際情況針對調(diào)休安排展開問卷調(diào)查,提出了,,三種放假方案,調(diào)查結果如下:

支持方案

支持方案

支持方案

35歲以下

20

40

80

35歲以上(含35歲)

10

10

40

1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從支持方案的人中抽取了6人,求的值;

2)在支持方案的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,是過定點且傾斜角為的直線,在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為 .

(1)寫出直線的參數(shù)方程,并將曲線的方程為化直角坐標方程;

(2)若曲線與直線相交于不同的兩點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),當時,的極大值為7;當時,有極小值.

(1)的值;

(2)求函數(shù)上的最小值.

查看答案和解析>>

同步練習冊答案