【題目】設(shè)直線過點(diǎn),且傾斜角為。
(1)寫出直線的標(biāo)準(zhǔn)參數(shù)方程;
(2)設(shè)此直線與曲線( 為參數(shù))交于兩點(diǎn),求的值。
【答案】(1)見解析(2)
【解析】試題分析:(1)由題意可得直線l的參數(shù)方程為: ,化簡即可得出.
(2)曲線C: (θ為參數(shù)),利用平方關(guān)系即可化為普通方程,把直線l的參數(shù)方程代入化為:13t2+60t+116=0,利用根與系數(shù)的關(guān)系、參數(shù)的幾何意義即可得出.
試題解析:
(1)直線l的參數(shù)方程是
(2)把曲線C的參數(shù)方程中參數(shù)θ消去,得4x2+y2-16=0.把直線l的參數(shù)方程代入曲線C的普通方程中,得4(-3-t)2+(3+t)2-16=0,即13t2+60t+116=0.
由t的幾何意義,知|PA|·|PB|=|t1·t2|,∴|PA|·|PB|=|t1·t2|=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線()與軸交于點(diǎn),動(dòng)圓與直線相切,并且與圓相外切,
(1)求動(dòng)圓的圓心的軌跡的方程;
(2)若過原點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),問是否存在以為直徑的圓經(jīng)過點(diǎn)?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù),當(dāng)時(shí), ,則關(guān)于的函數(shù)的所有零點(diǎn)之和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C: ,直線與拋物線C交于A,B兩點(diǎn).
(1)若直線過拋物線C的焦點(diǎn),求.
(2)已知拋物線C上存在關(guān)于直線對稱的相異兩點(diǎn)M和N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).
(1)求證:AF∥平面PEC
(2)求證:平面PCD⊥平面PEC;
(3)求三棱錐C-BEP的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0),傾斜角為45°的直線與橢圓相交于M、N兩點(diǎn),且線段MN的中點(diǎn)為(﹣1, ).過橢圓E內(nèi)一點(diǎn)P(1, )的兩條直線分別與橢圓交于點(diǎn)A、C和B、D,且滿足 ,其中λ為實(shí)數(shù).當(dāng)直線AP平行于x軸時(shí),對應(yīng)的λ= .
(1)求橢圓E的方程;
(2)當(dāng)λ變化時(shí),kAB是否為定值?若是,請求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機(jī)器人的運(yùn)動(dòng)軌道是邊長為1米的正三角形ABC,開機(jī)后它從A點(diǎn)出發(fā),沿軌道先逆時(shí)針運(yùn)動(dòng)再順時(shí)針運(yùn)動(dòng),每運(yùn)動(dòng)6米改變一次運(yùn)動(dòng)方向(假設(shè)按此方式無限運(yùn)動(dòng)下去),運(yùn)動(dòng)過程中隨時(shí)記錄逆時(shí)針運(yùn)動(dòng)的總路程s1和順時(shí)針運(yùn)動(dòng)的總路程s2,x為該機(jī)器人的“運(yùn)動(dòng)狀態(tài)參數(shù)”,規(guī)定:逆時(shí)針運(yùn)動(dòng)時(shí)x=s1,順時(shí)針運(yùn)動(dòng)時(shí)x=-s2,機(jī)器人到A點(diǎn)的距離d與x滿足函數(shù)關(guān)系d=f(x),現(xiàn)有如下結(jié)論:
①f(x)的值域?yàn)椋?/span>0,1];
②f(x)是以3為周期的函數(shù);
③f(x)是定義在R上的奇函數(shù);
④f(x)在區(qū)間[-3,-2]上單調(diào)遞增.
其中正確的有_________(寫出所有正確結(jié)論的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的n項(xiàng)和為Sn , 且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則{an}的通項(xiàng)公式an= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(a∈R).
(Ⅰ)若f(1)=2,求函數(shù)y=f(x)-2x在[,2]上的值域;
(Ⅱ)當(dāng)a∈(0,)時(shí),試判斷f(x)在(0,1]上的單調(diào)性,并用定義證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com