(本題11分)
如圖,在多面體ABCDE中,AE⊥面ABC,BD∥AE,且AC=AB=BC=BD=2,AE=1,F(xiàn)為CD中點(diǎn).      (1)求證:EF⊥面BCD;
(2)求面CDE與面ABDE所成的二面角的余弦值.(3)求B點(diǎn)到面ECD的距離

 
(3)
建立如圖坐標(biāo)系
E(0,,0)  C(-1,0,0)  D(1,0,2)
B(1,0,0) EC=(-1,-,-1)
CD=(2,0,2)   CB=(-2,0,0)  
面ECD法向量n="(1,0,-1)  "

所以。所求距離為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)如圖,矩形ABCD中,平面ABE,BE=BC,F(xiàn)為CE上的點(diǎn),且平面ACE。

(1)求證:平面BCE;
(2)求證:AE//平面BFD。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
在四棱錐PABCD中,底面ABCD是一直角梯,
與底面成30°角.
(1)若為垂足,求證:
(2)求平面PAB與平面PCD所成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在三棱柱中,側(cè)面,且與底面成角,,則該棱柱體積的 最小值為          . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,SD⊥正方形ABCD所在平面,AB = 1,
1、求證:BCSC;
2、設(shè)棱SA的中點(diǎn)為M,求異面直線DMSB所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)如圖,在棱長(zhǎng)為2的正方體中,的中點(diǎn),的中點(diǎn).
(1)求證://平面;(2)求三棱錐的體積;
(3)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分14分)三棱柱的直觀圖及三視圖(主視圖和俯視圖是正方形,左側(cè)圖是等腰直角三角形)如圖,的中點(diǎn).
(1)求證:平面;
(2)求證:平面
(3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,四棱錐P—ABCD中,底面ABCD為菱形,PD=AD,∠DAB="60°," PD⊥底面ABCD.
(1)求作平面PAD與平面PBC的交線,并加以證明;
(2)求PA與平面PBC所成角的正弦值;
(3)求平面PAD與平面PBC所成銳二面角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行六面體中,, ,,
(1)求;
(2)求證:平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案