已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a3=9.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.
(I)設(shè)等差數(shù)列{log2(an-1)}的公差為d.
由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.
所以log2(an-1)=1+(n-1)×1=n,即an=2n+1.
(II)證明:因?yàn)?span >
1
an+1-an
=
1
2n+1-2n
=
1
2n
,
所以
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=
1
21
+
1
22
+
1
23
+…+
1
2n
=
1
2
-
1
2n
×
1
2
1-
1
2
=1-
1
2n
<1,
即得證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,若,設(shè)
(1)求證:數(shù)列 是等比數(shù)列;
(2)分別求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在△ABC中,若lgsinA,lgsinB,lgsinC成等差數(shù)列,且三個(gè)內(nèi)角,A,B,C也成等差數(shù)列,則三角形的形狀為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}的通項(xiàng)公式為an=2n(n∈N*),把數(shù)列{an}的各項(xiàng)排列成如圖所示的三角形數(shù)陣:記M(s,t)表示該數(shù)陣中第s行的第t個(gè)數(shù),則數(shù)陣中的偶數(shù)2010對(duì)應(yīng)于( 。
A.M(45,15)B.M(45,25)C.M(46,16)D.M(46,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,若a、b、c成等差數(shù)列,sinB=
4
5
且△ABC的面積為
3
2
,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}是由正數(shù)組成的等差數(shù)列,Sn是其前n項(xiàng)的和,并且a3=5,a4S2=28.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
對(duì)一切n∈N*均成立的最大實(shí)數(shù)a;
(3)對(duì)每一個(gè)k∈N*,在ak與ak+1之間插入2k-1個(gè)2,得到新數(shù)列{bn},設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,試問(wèn)是否存在正整數(shù)m,使Tm=2008?若存在求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知{an}是等比數(shù)列,a4·a7=-512,a3+a8=124,且公比為整數(shù),則公比q為(   ).
A.2B.-2C.D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

“遠(yuǎn)望巍巍塔七層,紅燈向下成倍增,共燈三百八十一,試問(wèn)塔頂幾盞燈?”
答曰:      盞.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等比數(shù)列中,=(    )
A.4B.16C.-4D.-16

查看答案和解析>>

同步練習(xí)冊(cè)答案