已知以下四個(gè)函數(shù):①y=kx(k∈R);②y=xn(n為奇數(shù));③y=x2cosx;④y=2x+sinx.其中圖象可以平分圓O:x2+y2=1的面積的函數(shù)個(gè)數(shù)為( 。
A、1B、2C、3D、4
考點(diǎn):函數(shù)與方程的綜合運(yùn)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用圓的對(duì)稱性,判斷函數(shù)的奇偶性然后推出結(jié)果即可.
解答: 解:因?yàn)閳AO:x2+y2=1的圖象關(guān)于坐標(biāo)軸以及原點(diǎn)對(duì)稱,要使函數(shù)的圖象平方圓的面積,只需函數(shù)是奇函數(shù),
因?yàn)椋孩賧=kx(k∈R);是奇函數(shù),圖象可以平分圓O:x2+y2=1的面積.滿足題意.
②y=xn(n為奇數(shù));是奇函數(shù),圖象可以平分圓O:x2+y2=1的面積.滿足題意.
③y=x2cosx;是偶函數(shù),圖象不平分圓O:x2+y2=1的面積.不滿足題意.
④y=2x+sinx.是奇函數(shù),圖象可以平分圓O:x2+y2=1的面積.滿足題意.
故選:C.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性沒有的圖形的性質(zhì),考查分析問題解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中tanA=3,
AP
=
1
3
AB
+
2
3
AC
,
AD
=λ(
AB
|
AB
|•cosB
+
AC
|
AC
|•cosC
)且
AP
AD
,則tanB=( 。
A、
1
2
B、
2
3
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐C-ABDE中,F(xiàn)為CD的中點(diǎn),DB⊥平面ABC,BD∥AE,BD=2AE.
(Ⅰ)求證:EF∥平面ABC;
(Ⅱ)若AB=BC=CA=BD=6,求點(diǎn)A到平面ECD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2

(1)求f(x)的單調(diào)遞增區(qū)間
(2)求f(x)在區(qū)間][0,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=
37
4
-n,當(dāng)a1a2a3+a2a3a4+a3a4a5+…+anan+1an+2取得最大值時(shí),n的值為( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩定點(diǎn)A(-1,0)和B(1,0),動(dòng)點(diǎn)P(x,y)在直線l:y=x+2上移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的離心率的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形ABC中,AC=BC=
2
2
AB,四邊形ABED是正方形,平面ABED⊥底面ABC,若G、F分別是EC、BD的中點(diǎn).
(1)求證:GF∥底面ABC;
(2)求證:AC⊥平面EBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為BC上一點(diǎn),BD=
1
2
DC,∠ADB=120°,AD=2,若△ADC的面積為3-
3
,則∠ABC=(  )
A、30°B、60°
C、15°D、45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S3+2,S9+2,S6+2成等差數(shù)列,且a2+a5=4.
(Ⅰ)求數(shù)列{an}的公比q;
(Ⅱ)設(shè)bn=log2|an|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案