【題目】現(xiàn)有10件產(chǎn)品中有3件次品,7件正品,從中抽取5件用數(shù)字表示
(1)沒有次品的抽法有多少種?
(2)有2件次品的抽法有多少種?
(3)至少1件次品的抽法有多少種?
【答案】(1);(2);(3).
【解析】
(1)沒有次品即全為正品,利用組合數(shù)公式計(jì)算可得;
(2)事件分兩步完成,第一步從3件次品中抽取2件次品,第二步從7件正品中抽取3件正品,根據(jù)乘法原理計(jì)算求得,
(3)事件至少抽出1件次品包括抽取1件次品,抽取2件次品和抽取3件次品三類,利用乘法原理分別計(jì)算三類的得數(shù),再利用加法原理計(jì)算求得.
解:(1)共10件產(chǎn)品中有3件次品,從中任意抽出5件產(chǎn)品,沒有次品的抽法有種;
(2)共10件產(chǎn)品中有3件次品,從中任意抽出5件產(chǎn)品,
其中恰好抽出2件次品的抽法有種,
(3)從10件產(chǎn)品中,任意抽取5件產(chǎn)品,
其中至少抽出1件次品包括抽取1件次品,抽取2件次品和抽取3件次品三類
故至少抽出1件次品的抽法有種.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知,大型網(wǎng)絡(luò)游戲(下面簡(jiǎn)稱網(wǎng)游)的運(yùn)行必須依托于網(wǎng)絡(luò)的基礎(chǔ)上,否則會(huì)出現(xiàn)頻繁掉線的情況,進(jìn)而影響游戲的銷售和推廣.某網(wǎng)游經(jīng)銷商在甲地區(qū)個(gè)位置對(duì)兩種類型的網(wǎng)絡(luò)(包括“電信”和“網(wǎng)通”)在相同條件下進(jìn)行游戲掉線測(cè)試,得到數(shù)據(jù)如下:
(Ⅰ)如果在測(cè)試中掉線次數(shù)超過次,則網(wǎng)絡(luò)狀況為“糟糕”,否則為“良好”,那么在犯錯(cuò)誤的概率不超過的前提下,能否說明網(wǎng)絡(luò)狀況與網(wǎng)絡(luò)的類型有關(guān)?
(Ⅱ)若該游戲經(jīng)銷商要在上述接受測(cè)試的電信的個(gè)地區(qū)中任選個(gè)作為游戲推廣,求、兩地區(qū)至少選到一個(gè)的概率.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為,其圖像相鄰的兩條對(duì)稱軸之間的距離為,且的圖像關(guān)于點(diǎn)對(duì)稱,則下列結(jié)論正確的是( ).
A.函數(shù)的圖像關(guān)于直線對(duì)稱
B.當(dāng)時(shí),函數(shù)的最小值為
C.若,則的值為
D.要得到函數(shù)的圖像,只需要將的圖像向右平移個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上是增函數(shù).
求實(shí)數(shù)的值;
若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形, , , , 分別為線段, 的中點(diǎn).
(1)證明: 平面;
(2)若平面, ,求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年茂名市舉辦“好心杯”少年美術(shù)書法作品比賽,某賽區(qū)收到200件參賽作品,為了解作品質(zhì)量,現(xiàn)從這些作品中隨機(jī)抽取12件作品進(jìn)行試評(píng).成績(jī)?nèi)缦拢?7,82,78,86,96,81,73,84,76,59,85,93.
(1)求該樣本的中位數(shù)和方差;
(2)若把成績(jī)不低于85分(含85分)的作品認(rèn)為為優(yōu)秀作品,現(xiàn)在從這12件作品中任意抽取3件,求抽到優(yōu)秀作品的件數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2016年8月巴西里約熱內(nèi)盧舉辦的第31屆奧運(yùn)會(huì)上,乒乓球比賽團(tuán)體決賽實(shí)行五場(chǎng)三勝制,且任何一方獲勝三場(chǎng)比賽即結(jié)束.甲、乙兩個(gè)代表隊(duì)最終進(jìn)入決賽,根據(jù)雙方排定的出場(chǎng)順序及以往戰(zhàn)績(jī)統(tǒng)計(jì)分析,甲隊(duì)依次派出的五位選手分別戰(zhàn)勝對(duì)手的概率如下表:
出場(chǎng)順序 | 1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) |
獲勝概率 |
若甲隊(duì)橫掃對(duì)手獲勝(即3∶0獲勝)的概率是,比賽至少打滿4場(chǎng)的概率為.
(1)求,的值;
(2)求甲隊(duì)獲勝場(chǎng)數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com