【題目】已知f(x)=2sin(2x+ ),若將它的圖象向右平移 個單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)圖象的一條對稱軸的方程為( )
A.x=
B.x=
C.x=
D.x=
【答案】C
【解析】解:f(x)=2sin(2x+ ),若將它的圖象向右平移 個單位,
得到函數(shù)g(x)=2sin[2(x﹣ )+ )]=2sin(2x﹣ )的圖象,
令2x﹣ =kπ+ ,k∈z,求得x= + ,故函數(shù)的圖象的一條對稱軸的方程為x= ,
故選:C.
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點M是棱AD的中點
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)= ,曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:及點,.
過B作直線l與圓C相交于M,N兩點,,求直線l的方程;
在圓C上是否存在點P,使得?若存在,求點P的個數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上是單調(diào)增函數(shù)的是( )
A.
B.y=|x|﹣1
C.y=lgx
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+2=an+1﹣an , 且a1=2,a2=3,Sn為數(shù)列{an}的前n項和,則S2016的值為( )
A.0
B.2
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖幾何體中,等邊三角形所在平面垂直于矩形所在平面,又知,//.
(1)若的中點為,在線段上,//平面,求;
(2)若平面與平面所成二面角的余弦值為,求直線與平面所成角的正弦值;
(3)若中點為,,求在平面上的正投影。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分條件,求實數(shù)m的取值范圍;
(2)若是 成立的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com