知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,且.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)且斜率不為0的直線交橢圓兩點(diǎn).試問軸上是否存在異于的定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

(1);(2)存在,.

解析試題分析:(1)由離心率為可得到一個關(guān)于的方程,再根據(jù)MB1⊥MB2即可得;(2)本題采用“設(shè)而不求”的方法,將A,B兩點(diǎn)坐標(biāo)設(shè)出,但不求出.注意到平分,則直線的傾斜角互補(bǔ)這個性質(zhì),從而由斜率著手,以韋達(dá)定理為輔助工具,得出點(diǎn)P的坐標(biāo).
試題解析:(1)由
,知是等腰直角三角形,從而.
所以橢圓C的方程是.                                  5分
(2)設(shè),直線AB的方程為
,
所以 ①,②                       8分
平分,則直線的傾斜角互補(bǔ),
所以
設(shè),則有,                                 10分
代入上式,整理得,
將①②代入得,由于上式對任意實(shí)數(shù)都成立,所以.
綜上,存在定點(diǎn),使平分PM平分∠APB.                       13分
考點(diǎn):1.橢圓的簡單幾何性質(zhì);2.直線與圓錐曲線的位置關(guān)系;3.斜率公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在軸上方有一段曲線弧,其端點(diǎn)、軸上(但不屬于),對上任一點(diǎn)及點(diǎn),,滿足:.直線分別交直線,兩點(diǎn).

(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,直線l與拋物線相交于不同的兩點(diǎn)A,B.
(I)如果直線l過拋物線的焦點(diǎn),求的值;
(II)如果,證明直線l必過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)且斜率為)的直線與橢圓相交于兩點(diǎn),直線、分別交直線 于兩點(diǎn),線段的中點(diǎn)為.記直線的斜率為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△ABC的兩個頂點(diǎn)A,B的坐標(biāo)分別是(-5,0),(5,0),且AC,BC所在直
線的斜率之積等于m(m≠0),求頂點(diǎn)C的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△ABC中, 點(diǎn)A,B的坐標(biāo)分別為A(-,0),B(,0)點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C坐標(biāo)為(,1),求以A,B為焦點(diǎn)且經(jīng)過點(diǎn)C的橢圓的方程:
(Ⅱ)過點(diǎn)P(m,0)作傾斜角為的直線l交(1)中曲線于M,N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線焦點(diǎn)為,直線經(jīng)過點(diǎn)且與拋物線相交于,兩點(diǎn)

(Ⅰ)若線段的中點(diǎn)在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、,P為橢圓 上任意一點(diǎn),且的最小值為.
(1)求橢圓的方程;
(2)動圓與橢圓相交于A、B、C、D四點(diǎn),當(dāng)為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.

查看答案和解析>>

同步練習(xí)冊答案