14.下列四個(gè)方程中表示y是x的函數(shù)的是( 。
①x=y2②y=1-x2③y=$\frac{1}{2}$x-3④y2=1-x.
A.①②B.②③C.③④D.①②④

分析 根據(jù)函數(shù)的定義,對(duì)于x任意一個(gè)值,y有唯一的值與之對(duì)應(yīng),可得結(jié)論.

解答 解:根據(jù)函數(shù)的定義,對(duì)于x任意一個(gè)值,y有唯一的值與之對(duì)應(yīng),可知表示y是x的函數(shù)的是②③,
故選B.

點(diǎn)評(píng) 本題考查函數(shù)的定義,考查學(xué)生對(duì)概念的理解,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示,A,B,D在地平面同一直線上,AB=20,從A,B兩地測(cè)得C點(diǎn)的仰角分別為45°和60°,則C點(diǎn)離地面的高CD等于(  )
A.$10(\sqrt{3}-1)$B.$10(\sqrt{3}+1)$C.$10(3-\sqrt{3})$D.$10(3+\sqrt{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=loga(2x-1)+2(a>0且a≠1)的圖象恒過點(diǎn)P,則點(diǎn)P的坐標(biāo)是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在空間直角坐標(biāo)系中,在z軸上的點(diǎn)的坐標(biāo)可記為( 。
A.(0,b,0)B.(a,0,0)C.(0,0,c)D.(0,b,c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={x|x2-1=0},則下列式子表示正確的有3個(gè);
①1∈A;②{-1}∈A;③∅⊆A;④{1,-1}⊆A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù)又在(-∞,0)上單調(diào)遞增的函數(shù)是( 。
A.y=x2B.y=exC.y=log0.5|x|D.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{4x+3y≤12}\end{array}\right.$,則z=$\frac{x+2y+3}{x+1}$的取值范圍是( 。
A.[$\frac{2}{3}$,5]B.[$\frac{3}{2}$,11]C.[$\frac{1}{5}$,$\frac{2}{3}$]D.[$\frac{1}{5}$,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.有下列四個(gè)命題:
①“若xy=1,則x,y互為倒數(shù)”的逆命題;
②“相似三角形的周長(zhǎng)相等”的否命題;
③“若b≤-1,則方程x2-2bx+b2+b=0有實(shí)根”的逆否命題;
④“若A∪B=B,則A?B”的逆否命題.
其中真命題是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.記函數(shù)f(x)的導(dǎo)數(shù)為f(1)(x),f(1)(x)的導(dǎo)數(shù)為f(2)(x),…,f(n-1)(x)的導(dǎo)數(shù)為f(n)(x)(n∈N*),若f(x)可進(jìn)行n次求導(dǎo),則f(x)均可近似表示為:f(x)≈f(0)+$\frac{{{f^{(1)}}(0)}}{1!}x+\frac{{{f^{(2)}}(0)}}{2!}{x^2}+\frac{{{f^{(3)}}(0)}}{3!}{x^3}$+…+$\frac{{{f^{(n)}}(0)}}{n!}{x^n}$,若取n=4,根據(jù)這個(gè)結(jié)論,則可近似估計(jì)cos2≈-$\frac{1}{3}$(用分?jǐn)?shù)表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案