當(dāng)n=1時,有(a-b)(a+b)=a2-b2;當(dāng)n=2時,有(a-b)(a2+ab+b2)=a3-b3;當(dāng)n=3時,有(a-b)(a3+a2b+ab2+b3)=a4-b4;當(dāng)n=4時,有(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5;當(dāng)n∈N*時,可歸納出的結(jié)論是________.
(a-b)(an+an-1b+…+abn-1+bn)=an+1-bn+1
分析:根據(jù)所給信息,可知兩因式中,一項為(a-b),另一項每一項的次數(shù)均為n-1,而且按照字母a的降冪排列,故可得答案.
解答:由題意,當(dāng)n=1時,有(a-b)(a+b)=a2-b2;
當(dāng)n=2時,有(a-b)(a2+ab+b2)=a3-b3;
當(dāng)n=3時,有(a-b)(a3+a2b+ab2+b3)=a4-b4;
當(dāng)n=4時,有(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5;
所以當(dāng)n∈N*時,有(a-b)(an+an-1b+…+abn-1+bn)=an-bn;
故答案為當(dāng)n∈N*時,有(a-b)(an+an-1b+…+abn-1+bn)=an+1-bn+1;
點評:本題的考點是歸納推理,主要考查信息的處理,關(guān)鍵是根據(jù)所給信息,可知兩因式中,一項為(a-b),另一項每一項的次數(shù)均為n-1,而且按照字母a的降冪排列.