已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切.
(I)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=4,證明:直線AB過定點(,-1).
【答案】分析:(I)由等軸雙曲線的離心率為,可得橢圓的離心率.因為直線與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,利用點到直線的距離公式和直線與圓相切的性質(zhì)可得,再利用a2=b2+c2即可得出;
(II)分直線AB的斜率不存在與存在兩種情況討論,①不存在時比較簡單;②斜率存在時,設(shè)直線AB的方程為y=kx+m,由橢圓m≠±1.與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系及斜率公式,再利用k1+k2=4即可證明.
解答:(I)解:∵等軸雙曲線的離心率為,∴橢圓的離心率
又∵直線與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,
,即b=1,
聯(lián)立,解得,
∴橢圓C的方程為
(II)證明:由(I)可知:M(0,1).
①若直線AB的斜率不存在,設(shè)方程為x=x,則A(x,y),B(x,-y).
由已知得,解得
此時直線AB的方程為,顯然過點
②若直線AB的斜率存在,設(shè)直線AB的方程為y=kx+m,由橢圓m≠±1.
設(shè)A(x1,y1),B(x2,y2).聯(lián)立
化為(1+2k2)x2+4kmx+2m2-2=0,
,.(*)
∵k1+k2=4,∴,
,化為
把(*)代入得,∴k=2(m+1),∴
∴直線AB的方程為,即,
∴直線AB過定點
點評:熟練掌握橢圓與原點的標準方程及其性質(zhì)、直線與圓性質(zhì)的性質(zhì)、點到直線的距離公式、直線 與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立化為一元二次方程點到根與系數(shù)的關(guān)系、直線的斜率計算公式等是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓c的方程為

查看答案和解析>>

科目:高中數(shù)學 來源:2009年廣東省廣州市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學理卷 題型:選擇題

已知橢圓C:的離心率為,過右焦點且斜率為的直線與橢圓C相交于、兩點.若,則 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省高二第一學期期末考試文科數(shù)學 題型:解答題

(本小題滿分12分)

已知橢圓C:,它的離心率為.直線與以原點為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年吉林一中高二下學期第一次月考數(shù)學文卷 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線與橢圓C交于,兩點,點,且,求直線的方程.

 

查看答案和解析>>

同步練習冊答案