(12分)如圖所示,已知空間四邊形ABCD,E、F分別是邊AB、AD的中點(diǎn),F(xiàn)、G分別是邊BC、CD上的點(diǎn),且,求證直線EF、GH、AC交于一點(diǎn).

 

【答案】

見(jiàn)解析

【解析】

試題分析:如答圖所示

∵AE=EB,AH=HD,∴EH//BD,且EH=BD,

,∴FG//BD,且FG=BD,

∴EH//FG,且EH≠FG,

故四邊形EFGH為梯形,則EF與GH必相交,

設(shè)交點(diǎn)為P,P∈平面ABC,又P∈平面DAC,

又平面BAC∩平面DAC=AC,故P∈AC,

即EF、GH、AC交于一點(diǎn).

考點(diǎn):本題主要考查平行關(guān)系。

點(diǎn)評(píng):立體幾何問(wèn)題,常常要轉(zhuǎn)化成平面幾何問(wèn)題。這里較多地運(yùn)用了三角形中的線線平行關(guān)系,從共面到兩直線交于一點(diǎn),達(dá)到證明目的。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們將底面是正方形,側(cè)棱長(zhǎng)都相等的棱錐稱為正四棱錐.已知由兩個(gè)完全相同的正四棱錐組合而成的空間幾何體的正視圖、側(cè)視圖、俯視圖都相同,且如圖所示,視圖中四邊形ABCD是邊長(zhǎng)為1的正方形,則該幾何體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖所示,已知平面與空間四邊形ABCD的四條邊

AB、BCCD、DA分別交于EF、G、H

若四邊形EFGH是平行四邊形.求證:BD//,AC//.

   

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如圖所示,已知平面與空間四邊形ABCD的四條邊

AB、BCCD、DA分別交于E、F、G、H

若四邊形EFGH是平行四邊形.求證:BD//,AC//.

   

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點(diǎn),

(1)求證:平面;

(2)求二面角的大小.

【解析】第一問(wèn)利用線面垂直的判定定理和建立空間直角坐標(biāo)系得到法向量來(lái)表示二面角的。

第二問(wèn)中,以A為原點(diǎn),如圖所示建立直角坐標(biāo)系

,,

設(shè)平面FAE法向量為,則

,

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省福州三中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

我們將底面是正方形,側(cè)棱長(zhǎng)都相等的棱錐稱為正四棱錐.已知由兩個(gè)完全相同的正四棱錐組合而成的空間幾何體的正視圖、側(cè)視圖、俯視圖都相同,且如圖所示,視圖中四邊形ABCD是邊長(zhǎng)為1的正方形,則該幾何體的體積為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案