【題目】如圖,四邊形是正方形,平面,,,, 分別為,,的中點.

1求證:平面;

2求平面與平面所成銳二面角的大小.

【答案】1證明見解析2

【解析】

試題1利用已知的線面垂直關系建立空間直角坐標系,準確寫出相關點的坐標,從而將幾何證明轉(zhuǎn)化為向量運算.其中靈活建系是解題的關鍵.2證明證線線垂直,只需要證明直線的方向向量垂直;3把向量夾角的余弦值轉(zhuǎn)化為兩平面法向量夾角的余弦值;4空間向量將空間位置關系轉(zhuǎn)化為向量運算,應用的核心是要充分認識形體特征,建立恰當?shù)淖鴺讼,實施幾何問題代數(shù)化.同時注意兩點:一是正確寫出點、向量的坐標,準確運算;二是空間位置關系中判定定理與性質(zhì)定理條件要完備.

試題解析:1證明:,分別為,的中點,

.

平面,平面,

平面.

2:平面,,平面

平面.

四邊形是正方形,.

為原點,分別以直線軸, 軸,

建立如圖所示的空間直角坐標系,設

,

,,,,

,.

分別為,,的中點,

,,,,

解法一為平面的一個法向量,則,

,令,得.

為平面的一個法向量,則,

,令,得.

所以==.

所以平面與平面所成銳二面角的大小為

解法二,,

是平面一個法向量.

,,

是平面平面一個法向量.

平面與平面所成銳二面角的大小為).

解法延長使得

,,

四邊形是平行四邊形,

四邊形是正方形

,分別為的中點,

平面,平面, 平面.

平面平面平面

平面與平面所成銳二面角與二面角相等.

平面平面

平面是二面角的平面角.

平面與平面所成銳二面角的大小為).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從某工廠生產(chǎn)線上隨機抽取16件零件,測量其內(nèi)徑數(shù)據(jù)從小到大依次排列如下:1.12,1.25,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42.據(jù)此可估計該生產(chǎn)線上大約有25%的零件內(nèi)徑小于等于___________,大約有30%的零件內(nèi)徑大于___________mm(單位:mm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f (x)=ln x-x+1.

(1)討論函數(shù)f (x)的單調(diào)性;

(2)證明當x∈(1,+∞)時, ;

(3)設c>1,證明當x∈(0,1)時,1+(c-1)x>cx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足(1)對于定義域上的任意,恒有;(2)對于定義域上的任意時,恒有,則稱函數(shù)理想函數(shù),給出下列四個函數(shù)中:① ;③;④,則被稱為理想函數(shù)的有(

A.B.②④C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù).

1)若方程兩個根之和為4,兩根之積為3,且過點(2,1).的解集;

2)若關于的不等式的解集為.

(ⅰ)求解關于的不等式

(ⅱ)設函數(shù),求函數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過圓上的點作圓的切線過點作切線的垂線,若直線過拋物線的焦點.

(1)求直線與拋物線的方程

2若直線與拋物線交于點,在拋物線的準線上,,的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某親子游戲結束時有一項抽獎活動,抽獎規(guī)則是:盒子里面共有5個小球,小球上分別寫有0,1,2,3,4的數(shù)字,小球除數(shù)字外其它完全相同,每對親子中,家長先從盒子中取出一個小球,記下數(shù)字后將小球放回,孩子再從盒子中取出一個小球,記下小球上數(shù)字將小球放回.抽獎活動的獎勵規(guī)則是:①若取出的兩個小球上數(shù)字之積大于8,則獎勵飛機玩具一個;②若取出的兩個小球上數(shù)字之積在區(qū)間上,則獎勵汽車玩具一個;③若取出的兩個小球上數(shù)字之積小于2,則獎勵飲料一瓶.

(1)求每對親子獲得飛機玩具的概率;

(2)試比較每對親子獲得汽車玩具與獲得飲料的概率,哪個更大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y()與銷售單價x()之間的關系可近似看作一次函數(shù)ykxb(k≠0),函數(shù)圖象如圖所示.

(1)根據(jù)圖象,求一次函數(shù)ykxb(k≠0)的表達式;

(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).證明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側面積.

查看答案和解析>>

同步練習冊答案