【題目】如圖,AB是圓O的直徑,C是圓O上不同于A,B的一點(diǎn),PA⊥平面ABC,E是PC的中點(diǎn), ,PA=AC=1.

(1)求證:AE⊥PB;
(2)求二面角A﹣PB﹣C的正弦值.

【答案】
(1)證明:∵PA⊥平面ABC,BC平面ABC

∴PA⊥BC,

又AB是圓O的直徑,C是圓O上不同于A,B的一點(diǎn)

∴∠ACB=90°,即AC⊥BC,又PA∩AC=A

∴BC⊥平面PAC,又AE平面PAC

∴BC⊥AE

∵PA=AC,E是PC的中點(diǎn)

∴AE⊥PC,又BC∩PC=C

∴AE⊥平面PBC,又PB平面PBC

∴AE⊥PB


(2)證明:過(guò)A作AF⊥PB交PB于F,連接EF

又由(1)得AE⊥PB,AE∩AF=A

∴PB⊥平面AEF,又EF平面AEF

∴PB⊥EF,又AF⊥PB

∴∠AFE是二面角A﹣PB﹣C的平面角

∵在Rt△PAC中,PA=AC=1,則 ,

在Rt△PAB中,PA=1, ,同理得

∴在Rt△AEF中,

故二面角A﹣PB﹣C的正弦值為


【解析】(1)由線(xiàn)面垂直得PA⊥BC,由圓O的直徑,得AC⊥BC,從而AE平面PAC,進(jìn)而B(niǎo)C⊥AE,由等腰三角形性質(zhì)得AE⊥PC,由此能證明AE⊥PB.(2)過(guò)A作AF⊥PB交PB于F,連接EF,推導(dǎo)出∠AFE是二面角A﹣PB﹣C的平面角,由此能求出二面角A﹣PB﹣C的正弦值.
【考點(diǎn)精析】利用空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知相交直線(xiàn):同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線(xiàn):同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線(xiàn): 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,則滿(mǎn)足不等式 的實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)a1=a,a2=b,3an+2﹣5an+1+2an=0(n≥0,n∈N),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知直線(xiàn)2x+y﹣8=0與直線(xiàn)x﹣2y+1=0交于點(diǎn)P.
(1)求過(guò)點(diǎn)P且平行于直線(xiàn)4x﹣3y﹣7=0的直線(xiàn)11的方程;(結(jié)果都寫(xiě)成一般方程形式)
(2)求過(guò)點(diǎn)P的所有直線(xiàn)中使原點(diǎn)O到此直線(xiàn)的距離最大的直線(xiàn)12的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(ex , lnx+k), =(1,f(x)), (k為常數(shù),e是自然對(duì)數(shù)的底數(shù)),曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與y軸垂直,F(xiàn)(x)=xexf′(x).
(1)求k的值及F(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=﹣x2+2ax(a為正實(shí)數(shù)),若對(duì)任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(﹣ +lg ﹣lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且2acosC=2b﹣c.
(Ⅰ)求角A的大;
(Ⅱ)如果a=1,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)給出的空間幾何體的三視圖,用斜二測(cè)畫(huà)法畫(huà)出它的直觀(guān)圖.(寫(xiě)出畫(huà)法,并保留作圖痕跡)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

同步練習(xí)冊(cè)答案