已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(I)求數(shù)列{an}的通項公式;
(II)求數(shù)列{}的前n項和.
【答案】分析:(I)
根據(jù)等差數(shù)列的通項公式化簡a2=0和a6+a8=-10,得到關(guān)于首項和公差的方程組,求出方程組的解即可得到數(shù)列的首項和公差,根據(jù)首項和公差寫出數(shù)列的通項公式即可;
(II)
把(I)求出通項公式代入已知數(shù)列,列舉出各項記作①,然后給兩邊都除以2得另一個關(guān)系式記作②,①-②后,利用an的通項公式及等比數(shù)列的前n項和的公式化簡后,即可得到數(shù)列{}的前n項和的通項公式.
解答:解:(I)設(shè)等差數(shù)列{an}的公差為d,由已知條件可得,
解得:,
故數(shù)列{an}的通項公式為an=2-n;
(II)設(shè)數(shù)列{}的前n項和為Sn,即Sn=a1++…+①,故S1=1,
=++…+②,
當n>1時,①-②得:
=a1++…+-
=1-(++…+)-
=1-(1-)-=,
所以Sn=
綜上,數(shù)列{}的前n項和Sn=
點評:此題考查學生靈活運用等差數(shù)列的通項公式化簡求值,會利用錯位相減法求數(shù)列的和,是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案