【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費(fèi)用,需了解年研發(fā)費(fèi)用(單位:千萬元)對(duì)年銷售量(單位:千萬件)的影響,統(tǒng)計(jì)了近年投入的年研發(fā)費(fèi)用與年銷售量的數(shù)據(jù),得到散點(diǎn)圖如圖所示:

(Ⅰ)利用散點(diǎn)圖判斷,(其中為大于的常數(shù))哪一個(gè)更適合作為年研發(fā)費(fèi)用和年銷售量的回歸方程類型(只要給出判斷即可,不必說明理由);

(Ⅱ)對(duì)數(shù)據(jù)作出如下處理:令,,得到相關(guān)統(tǒng)計(jì)量的值如下表:

根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

(Ⅲ)已知企業(yè)年利潤(rùn)(單位:千萬元)與,的關(guān)系為(其中),根據(jù)(Ⅱ)的結(jié)果,要使得該企業(yè)下一年的年利潤(rùn)最大,預(yù)計(jì)下一年應(yīng)投入多少研發(fā)費(fèi)用?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

【答案】(Ⅰ)由散點(diǎn)圖知,選擇回歸類型更適合;

;

(Ⅲ)要使年利潤(rùn)取最大值,預(yù)計(jì)下一年度投入27千萬元.

【解析】

(Ⅰ)根據(jù)散點(diǎn)圖的特點(diǎn)可知,相關(guān)關(guān)系更接近于冪函數(shù)類型;

)根據(jù)所給數(shù)據(jù),代入公式求得回歸直線的方程;

(Ⅲ)先求出年利潤(rùn)的表達(dá)式,結(jié)合不等式特點(diǎn)利用導(dǎo)數(shù)可得最值.

(Ⅰ)由散點(diǎn)圖知,選擇回歸類型更適合.

(Ⅱ)對(duì)兩邊取對(duì)數(shù),得,即

由表中數(shù)據(jù)得:,

,

∴年研發(fā)費(fèi)用與年銷售量的回歸方程為.

(Ⅲ)由(Ⅱ)知,

,

,得

且當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),,單調(diào)遞減.

所以當(dāng)千萬元時(shí),年利潤(rùn)取得最大值,且最大值為千萬元.

答:要使年利潤(rùn)取最大值,預(yù)計(jì)下一年度投入27千萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)的各景點(diǎn)從2009年取消門票實(shí)行免費(fèi)開放后,旅游的人數(shù)不斷地增加,不僅帶動(dòng)了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構(gòu),促進(jìn)了該市旅游向“觀光、休閑、會(huì)展”三輪驅(qū)動(dòng)的理想結(jié)構(gòu)快速轉(zhuǎn)變.下表是從2009年至2018年,該景點(diǎn)的旅游人數(shù)(萬人)與年份的數(shù)據(jù):

1

2

3

4

5

6

7

8

9

10

旅游人數(shù)(萬人)

300

283

321

345

372

435

486

527

622

800

該景點(diǎn)為了預(yù)測(cè)2021年的旅游人數(shù),建立了的兩個(gè)回歸模型:

模型①:由最小二乘法公式求得的線性回歸方程;

模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近.

(1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個(gè)位,精確到0.01).

(2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)2021年該景區(qū)的旅游人數(shù)(單位:萬人,精確到個(gè)位).

回歸方程

30407

14607

參考公式、參考數(shù)據(jù)及說明:

①對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為

②刻畫回歸效果的相關(guān)指數(shù)

③參考數(shù)據(jù):,

5.5

449

6.05

83

4195

9.00

表中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形, 上,且.

(1)求證: 的中點(diǎn);

(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

(1)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

(2)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線C關(guān)于軸對(duì)稱,頂點(diǎn)為坐標(biāo)原點(diǎn),且經(jīng)過點(diǎn)

1)求拋物線C的標(biāo)準(zhǔn)方程;

2 過點(diǎn)的直線交拋物線于MN兩點(diǎn).是否存在定直線,使得l上任意點(diǎn)P與點(diǎn)M,QN所成直線的斜率,成等差數(shù)列.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,底面為正三角形,側(cè)棱垂直于底面,.若是棱上的點(diǎn),且,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:在四棱錐中,平面.,,.點(diǎn)的交點(diǎn),點(diǎn)在線段上且.

(1)證明:平面

(2)求直線與平面所成角的正弦值;

(3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)橢圓.

(1)過橢圓的左焦點(diǎn),作垂直于軸的直線交橢圓兩點(diǎn),若,求實(shí)數(shù)的值;

(2)已知點(diǎn)、是橢圓上的動(dòng)點(diǎn),,求的取值范圍;

(3)若直線與橢圓交于、兩點(diǎn),求證:對(duì)任意大于3的實(shí)數(shù),以線段為直徑的圓恒過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生的體質(zhì)健康狀況,對(duì)高一、高二兩個(gè)年級(jí)的學(xué)生進(jìn)行了體質(zhì)測(cè)試.現(xiàn)從兩個(gè)年級(jí)學(xué)生中各隨機(jī)選取20人,將他們的測(cè)試數(shù)據(jù),用莖葉圖表示如圖:《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》的等級(jí)標(biāo)準(zhǔn)如表.規(guī)定:測(cè)試數(shù)據(jù)≥60,體質(zhì)健康為合格.

等級(jí)

優(yōu)秀

良好

及格

不及格

測(cè)試數(shù)據(jù)

(Ⅰ)從該校高二年級(jí)學(xué)生中隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生體質(zhì)健康合格的概率;

(Ⅱ)從兩個(gè)年級(jí)等級(jí)為優(yōu)秀的樣本中各隨機(jī)選取一名學(xué)生,求選取的兩名學(xué)生的測(cè)試數(shù)據(jù)平均數(shù)大于95的概率;

(Ⅲ)設(shè)該校高一學(xué)生測(cè)試數(shù)據(jù)的平均數(shù)和方差分別為,高二學(xué)生測(cè)試數(shù)據(jù)的平均數(shù)和方差分別為,試估計(jì)的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案