橢圓的離心率為,且過(guò)點(diǎn)(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=x+m與橢圓C交于兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),若△OAB為直角三角形,求m的值.
【答案】分析:(Ⅰ)根據(jù)離心率和(2,0)點(diǎn)代入橢圓方程進(jìn)而可求得a和c,進(jìn)而求得b,方程可得.
(2)把直線與橢圓聯(lián)立,消去y,根據(jù)判別式大于0,進(jìn)而可求得m的范圍.設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),當(dāng)∠AOB為直角時(shí),根據(jù),、求得m;當(dāng)∠OAB或∠OBA為直角時(shí),不妨設(shè)∠OAB為直角,由直線l的斜率為1,可得直線OA的斜率為-1,可得x1和y1的關(guān)系進(jìn)而求得x1和m.
解答:解:(Ⅰ)由已知,
所以a=2,
又a2=b2+c2,所以b=1,
所以橢圓C的方程為;.
(Ⅱ)聯(lián)立,
消去y得5x2+8mx+4m2-4=0,△=64m2-80(m2-1)=-16m2+80,
令△>0,即-16m2+80>0,解得
設(shè)A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),
(。┊(dāng)∠AOB為直角時(shí),

因?yàn)椤螦OB為直角,所以,即x1x2+y1y2=0,
所以2x1x2+m(x1+x2)+m2=0,
所以,解得
(ⅱ)當(dāng)∠OAB或∠OBA為直角時(shí),不妨設(shè)∠OAB為直角,
由直線l的斜率為1,可得直線OA的斜率為-1,
所以,即y1=-x1
;,
所以;,,
經(jīng)檢驗(yàn),所求m值均符合題意,綜上,m的值為
點(diǎn)評(píng):本題主要考查了橢圓的應(yīng)用.考查了學(xué)生綜合分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)、焦點(diǎn)在x軸的橢圓的離心率為,且過(guò)點(diǎn)().

(Ⅰ)求橢圓E的方程;

(Ⅱ)若A,B是橢圓E的左、右頂點(diǎn),直線)與橢圓E交于、兩點(diǎn),證明直線與直線的交點(diǎn)在垂直于軸的定直線上,并求出該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山西省高三第一學(xué)期8月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若過(guò)點(diǎn)C(-1,0)且斜率為的直線與橢圓相交于不同的兩點(diǎn),試問(wèn)在軸上是否存在點(diǎn),使是與無(wú)關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省株洲市高三第五次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若過(guò)點(diǎn)C(-1,0)且斜率為的直線與橢圓相交于不同的兩點(diǎn),試問(wèn)在軸上是否存在點(diǎn),使是與無(wú)關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高二上學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,且過(guò)點(diǎn)(),

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆陜西省西安市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:解答題

已知橢圓的離心率為,且過(guò)點(diǎn),為其右焦點(diǎn).

(1)求橢圓的方程;

(2)設(shè)過(guò)點(diǎn)的直線與橢圓相交于、兩點(diǎn)(點(diǎn)兩點(diǎn)之間),若的面積相等,試求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案