【題目】已知函數(shù).
(1)討論的單調性;
(2)若有兩個零點,求實數(shù)的取值范圍,并證明.
【答案】(1)見解析(2),證明見解析
【解析】
(1)先求導可得,分別討論和的情況,進而求解即可;
(2)設,當時由單調則不符合題意;當時,,可得,利用零點存在性定理可判斷,,進而求解即可;由于,可得,,則,設可得,進而證明在時恒成立即可
(1)由題意得,
①當時,,所以在上單調遞增;
②當時,由,得,
當時,,在上單調遞減;
當時,,在上單調遞增.
(2)由于有兩個零點,不妨設,
由(1)可知,當時,在上單調遞增,不符合題意;
當時,,,即,解得,
此時有,所以存在,使得,
由于,所以在上單調遞增,
所以當時,,所以在上單調遞增,
所以當時,;
所以,
所以存在,使得,
綜上,當時,有兩個零點.
證明:由于,,且,則,
所以,,所以,
設,有,則,
要證,只需證,即證,
設,則,
所以在上單調遞增,所以當時,,即,
故
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓的左、右焦點分別為,點在橢圓上,的面積為.
(1)求橢圓的標準方程;
(2)設圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年年初,新冠肺炎疫情防控工作全面有序展開.某社區(qū)對居民疫情防控知識進行了網(wǎng)上調研,調研成績?nèi)慷荚?/span>分到分之間.現(xiàn)從中隨機選取位居民的調研成績進行統(tǒng)計,繪制了如圖所示的頻率分布直方圖.
求的值,并估計這位居民調研成績的中位數(shù);
在成績?yōu)?/span>,的兩組居民中,用分層抽樣的方法抽取位居民,再從位居民中隨機抽取位進行詳談.記為位居民的調研成績在的人數(shù),求隨機變量的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為.
(1)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標方程化為直角坐標方程.
(2)曲線,是否相交?若相交,請求出公共弦長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(Ⅰ)寫出曲線的直角坐標方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com