【題目】執(zhí)行如圖程序框圖,如果輸入的a=4,b=6,那么輸出的n=( 。
A.3
B.4
C.5
D.6
【答案】B
【解析】解:模擬執(zhí)行程序,可得
a=4,b=6,n=0,s=0
執(zhí)行循環(huán)體,a=2,b=4,a=6,s=6,n=1
不滿足條件s>16,執(zhí)行循環(huán)體,a=﹣2,b=6,a=4,s=10,n=2
不滿足條件s>16,執(zhí)行循環(huán)體,a=2,b=4,a=6,s=16,n=3
不滿足條件s>16,執(zhí)行循環(huán)體,a=﹣2,b=6,a=4,s=20,n=4
滿足條件s>16,退出循環(huán),輸出n的值為4.
故選:B.
模擬執(zhí)行程序,根據(jù)賦值語句的功能依次寫出每次循環(huán)得到的a,b,s,n的值,當(dāng)s=20時(shí)滿足條件s>16,退出循環(huán),輸出n的值為4.;本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的a,b,s的值是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,點(diǎn)D是AB的中點(diǎn).
(1)求證:CD⊥平面A1ABB1;
(2)求證:AC1∥平面CDB1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校的課外綜合實(shí)踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到市氣象觀測(cè)站與市博愛醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 (°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) (個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該綜合實(shí)踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù): ;
.
參考公式:回歸直線,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD-A1B1C1D1中,E為AB中點(diǎn),F為CD1中點(diǎn).
(1)求證:EF∥平面ADD1A1;
(2)求直線EF和平面CDD1C1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選項(xiàng)4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,圓C的方程為(x+6)2+y2=25.
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;
(2)直線l的參數(shù)方程是 (t為參數(shù)),l與C交與A,B兩點(diǎn),|AB|= ,求l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線關(guān)于軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過拋物線的焦點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線過軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下四個(gè)命題:
(1)2n>2n+1(n≥3);
(2)2+4+6+…+2n=n2+n+2(n≥1);
(3)凸n邊形內(nèi)角和為f(n)=(n-1)π(n≥3);
(4)凸n邊形對(duì)角線條數(shù)f(n)= (n≥4).
其中滿足“假設(shè)n=k(k∈N,k≥n0)時(shí)命題成立,則當(dāng)n=k+1時(shí)命題也成立”.但不滿足“當(dāng)n=n0(n0是題中給定的n的初始值)時(shí)命題成立”的命題序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直線坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),a>0).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cosθ.
(1)說明C1是哪一種曲線,并將C1的方程化為極坐標(biāo)方程;
(2)直線C3的極坐標(biāo)方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點(diǎn)都在C3上,求a.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com