7.計(jì)算下列各式的值.
(1)121${\;}^{\frac{1}{2}}$    
(2)($\frac{125}{27}$)${\;}^{-\frac{2}{3}}$     
(3)2$\sqrt{3}$×$\root{3}{3}$×$\root{6}{3}$.

分析 直接利用有理指數(shù)冪的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:(1)121${\;}^{\frac{1}{2}}$=${11}^{2×\frac{1}{2}}$=11,
(2)($\frac{125}{27}$)${\;}^{-\frac{2}{3}}$=${(\frac{5}{3})}^{3×(-\frac{2}{3})}$=$\frac{9}{25}$.
(3)2$\sqrt{3}$×$\root{3}{3}$×$\root{6}{3}$=2×${3}^{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}$=6.

點(diǎn)評(píng) 本題考查有理指數(shù)冪的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知△ABC是銳角三角形,角A,B,C所對(duì)的邊分別是a,b,c,
(1)若a,b,c成等比數(shù)列,求角B的最大值,并判斷此時(shí)△ABC的形狀;
(2)若A,B,C成等差數(shù)列,求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=loga $\frac{x-3}{x+3}$,g(x)=1+loga(x-1),(a>0且a≠1),設(shè)f(x)和g(x)的定義域的公共部分為D,
(1)求集合D;
(2)當(dāng)a>1時(shí).若不等式g(x-$\frac{1}{6}$)-f(2x)>2在D內(nèi)恒成立,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,當(dāng)[m,n]?D時(shí),f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求實(shí)數(shù)a的取值范圍,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)正數(shù)列{an}滿足a1=a2=1,$\sqrt{{a}_{n}{a}_{n-2}}$-$\sqrt{{a}_{n-1}{a}_{n-2}}$=2an-1(n≥3),求通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使xf(x)<0的x的取值范圍是(  )
A.(-∞,-2)B.(-2,2)C.(2,+∞)D.(0,2)∪(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=lnx-(x-1)(a為常數(shù)).
(1)求函數(shù)f(x)的極值;
(2)試證明:對(duì)任意的n∈N*,都有l(wèi)n(1+$\frac{1}{n}$)$<\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}(x+1),x∈[0,2)}\\{-\frac{1}{2}{x}^{2}+4x-7,x∈[2,+∞)}\end{array}\right.$,則關(guān)于x的方程f(x)=a(0<a<1)的所有根之和為( 。
A.3-a-1B.1-3-aC.3a-1D.1-3a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.不等式3x2+5x-2<0的解集為( 。
A.(-∞,-2)∪($\frac{1}{3}$,+∞)B.(-2,$\frac{1}{3}$)C.[-2,$\frac{1}{3}$)D.(-2,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=sin2x+sin(2x+$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)區(qū)間;
(3)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案