已知數(shù)列{an}的前n項和為Sn,且a2an=S2+Sn對一切正整數(shù)n都成立.
(Ⅰ)求a1,a2的值;
(Ⅱ)設a1>0,數(shù)列的前n項和為Tn,當n為何值時,Tn最大?并求出Tn的最大值.
【答案】分析:(I)由題意,n=2時,由已知可得,a2(a2-a1)=a2,分類討論:由a2=0,及a2≠0,分別可求a1,a2
(II)由a1>0,令,可知==,結合數(shù)列的單調(diào)性可求和的最大項
解答:解:(I)當n=1時,a2a1=s2+s1=2a1+a2
當n=2時,得
②-①得,a2(a2-a1)=a2
若a2=0,則由(I)知a1=0,
若a2≠0,則a2-a1=1④
①④聯(lián)立可得
綜上可得,a1=0,a2=0或
(II)當a1>0,由(I)可得
當n≥2時,,

(n≥2)
=

由(I)可知==
∴{bn}是單調(diào)遞減的等差數(shù)列,公差為-lg2
∴b1>b2>…>b7=
當n≥8時,
∴數(shù)列的前7項和最大,==7-
點評:本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的通項公式及利用數(shù)列的單調(diào)性求解數(shù)列的和的最大項,還考查了一定的邏輯運算與推理的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案