已知函數(shù)f(x)=2
3
sin
x
3
cos
x
3
-2sin2
x
3

(Ⅰ)若x∈[0,π],求函數(shù)f(x)的值域;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(C)=1,且b2=ac,求sinA的值.
(Ⅰ)f(x)=2
3
sin
x
3
cos
x
3
-2sin2
x
3

=
3
sin
2x
3
+cos
2x
3
-1=2sin(
2x
3
+
π
6
)-1
.…(3分)
∵x∈[0,π],
π
6
2x
3
+
π
6
6

1
2
≤sin(
2x
3
+
π
6
)≤1

∴f(x)的值域為[0,1].…(4分)
(Ⅱ)∵f(C)=2sin(
2C
3
+
π
6
)-1=1

sin(
2C
3
+
π
6
)=1

而C∈(0,π),
C=
π
2
.…(2分)
在Rt△ABC中,∵b2=ac,c2=a2+b2,
c2=a2+ac?(
a
c
)
2
+
a
c
-1=0

解得
a
c
=
-1±
5
2

∴0<sinA<1,
sinA=
a
c
=
5
-1
2
.…(3分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當x∈[0,2π]時,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個零點;
(3)若f(x)+mx>1對一切的正實數(shù)x均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當x=
3
3
時,函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習冊答案