【題目】已知等差數(shù)列{an}滿足a2=2,a5=8.
(1)求{an}的通項公式;
(2)各項均為正數(shù)的等比數(shù)列{bn}中,b1=1,b2+b3=a4,求{bn}的前n項和Tn.
【答案】(1)an=2n-2.(2)Tn=2n-1.
【解析】試題分析:(1)將已知條件轉(zhuǎn)化為首項和公差表示,解方程組求得基本量,即可得到通項公式;(2)由b1=1,b2+b3=a4,解方程組可得到等比數(shù)列{bn}的首項和公比,代入公式可求得前n項和
試題解析:(1)設等差數(shù)列{an}的公差為d,
則由已知得∴a1=0,d=2.
∴an=a1+(n-1)d=2n-2.
(2)設等比數(shù)列{bn}的公比為q,則由已知得q+q2=a4,
∵a4=6,∴q=2或q=-3.
∵等比數(shù)列{bn}的各項均為正數(shù),∴q=2.
∴{bn}的前n項和Tn==
=2n-1.
科目:高中數(shù)學 來源: 題型:
【題目】為了在“十一”黃金周期間降價搞促銷,某超市對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:(1)如果不超過200元,則不予優(yōu)惠;(2)如果超過200元,但不超過500元,則按標價給予9折優(yōu)惠;(3)如果超過500元,其中500元按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠。小張兩次去購物,分別付款168元和423元,假設她一次性購買上述同樣的商品,則應付款額為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,設△ABC的頂點分別為,圓M是△ABC的外接圓,直線的方程是,
(1)求圓M的方程;
(2)證明:直線與圓M相交;
(3)若直線被圓M截得的弦長為3,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)為了解某校學生暑期參加體育鍛煉的情況,對某班M名學生暑期參加體育鍛煉的次數(shù)進行了統(tǒng)計,得到如下的頻率分布表與直方圖:
組別 | 鍛煉次數(shù) | 頻數(shù)(人) | 頻率 |
1 | 2 | 0.04 | |
2 | 11 | 0.22 | |
3 | 16 | ||
4 | 15 | 0.30 | |
5 | |||
6 | 2 | 0.04 | |
[ | 合計 | 1.00 |
(1)求頻率分布表中、、及頻率分布直方圖中的值;
(2)求參加鍛煉次數(shù)的眾數(shù)(直接寫出答案,不要求計算過程);
(3)若參加鍛煉次數(shù)不少于18次為及格,估計這次體育鍛煉的及格率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過原點的直線與橢圓交于兩點,點為橢圓上不同于的一點,直線的斜率均存在,且直線的斜率之積為.
(1)求橢圓的離心率;
(2)設分別為橢圓的左、右焦點,斜率為的直線經(jīng)過橢圓的右焦點,且與橢圓交于兩點.若點在以為直徑的圓內(nèi)部,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,△ABC的三個內(nèi)角為A,B,C,m=(sin B+sin C,0),n=(0,sin A)且
|m|2-|n|2=sin Bsin C.
(1)求角A的大小
(2)求sin B+sin C的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著網(wǎng)絡的發(fā)展,人們可以在網(wǎng)絡上購物、玩游戲、聊天、導航等,所以人們對上網(wǎng)流量的需求越來越大。某電信運營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶按年齡分組進行訪談,統(tǒng)計結(jié)果如下表.
組號 | 年齡 | 訪談人數(shù) | 愿意使用 |
1 | [20,30) | 5 | 5 |
2 | [30.40) | 10 | 10 |
3 | [40.50) | 15 | 12 |
4 | [50.60) | 14 | 8 |
5 | [60,70) | 6 | 2 |
(1)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取15人,則各組應分別抽取多少人?
(2)若從第5組的被調(diào)查者訪談人中隨機選取2人進行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(3)按以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以50歲為分界點,能否在犯錯誤不超過1%的前提下認為是否愿意選擇此款“流量包”套餐與人的年齡有關;
年齡不低于50歲的人數(shù) | 年齡低于50歲的人數(shù) | 合計 | |||||
愿意使用的人數(shù) | |||||||
不愿意使用的人數(shù) | |||||||
合計 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=是奇函數(shù),且f(2)=.
(1)求實數(shù)m和n的值;
(2)判斷函數(shù)f(x)在(-∞,0)上的單調(diào)性,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設g(x)=f(2x)-f(x+2),
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com