.已知雙曲線=1(a>0,b>0)的左、右兩個焦點(diǎn)分別為F1、F2,P是它左支上一點(diǎn),P到左準(zhǔn)線的距離為d,雙曲線的一條漸近線為y=x,問是否存在點(diǎn)P,使|PF1|、|PF2|成等比數(shù)列?若存在,求出P的坐標(biāo);若不存在說明理由.
假設(shè)存在點(diǎn)P(x0,y0)滿足題中條件.
∵雙曲線的一條漸近線為y=x,∴,∴b2=3a2,c2-a2=3a2 =2.即e=2.
=2得,
|PF2|=2|PF1|         ①
∵雙曲線的兩準(zhǔn)線方程為x=±,
∴|PF1|=|2x0+2·|=|2x0+a|,|PF2|=|2x0-2·|=|2x0-a|.
∵點(diǎn)P在雙曲線的左支上,∴|PF1|=-(a+ex0),|PF2|=a-ex0,代入①得:a-ex0=-2(a+ex0),∴x0=-a,代入=1,得y0=±a.
∴存在點(diǎn)P使d、|PF1|、|PF2|成等比數(shù)列,點(diǎn)P的坐標(biāo)是(-a,±a).
同答案
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)已知雙曲線的兩個焦點(diǎn)的坐標(biāo)為,離心率.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)是(1)中所求雙曲線上任意一點(diǎn),過點(diǎn)的直線與兩漸近線分別交于點(diǎn),若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過雙曲線C:的右焦點(diǎn)F作直線l與雙曲線C交于P、Q兩點(diǎn),,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的漸近線方程是,焦點(diǎn)在坐標(biāo)軸上且焦距是10,則此雙曲線的方程為              ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

=1(a>b>0)的漸近線(    )
A.重合
B.不重合,但關(guān)于x軸對稱
C.不重合,但關(guān)于y軸對稱
D.不重合,但關(guān)于直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C的兩條漸近線都過原點(diǎn),且都以點(diǎn)A(,0)為圓心,1為半徑的圓相切,雙曲線的一個頂點(diǎn)A1A點(diǎn)關(guān)于直線y=x對稱.
(1)求雙曲線C的方程.
(2)設(shè)直線l過點(diǎn)A,斜率為k,當(dāng)0<k<1時(shí),雙曲線C的上支上有且僅有一點(diǎn)B到直線l的距離為,試求k的值及此時(shí)B點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程表示雙曲線時(shí),這些雙曲線有相同的( )
A.實(shí)軸長B.虛軸長C.焦距D.焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線中心在原點(diǎn),以坐標(biāo)軸為對稱軸且與圓相交于A(4, -1),若此圓在點(diǎn)A的切線與雙曲線的一條漸進(jìn)線平行,則雙曲線的方程為——————

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的焦點(diǎn)到漸近線的距離等于實(shí)軸長,則雙曲線的離心率為 ( )
A.  B.  C.   D.

查看答案和解析>>

同步練習(xí)冊答案