【題目】如圖所示的幾何體是由棱臺(tái) 和棱錐拼接而成的組合體,其底面四邊形是邊長(zhǎng)為 的菱形,且 , 平面 ,

1)求證:平面 平面

2)求二面角的余弦值.

【答案】1)證明見(jiàn)解析;(2

【解析】試題分析:

1)要證明平面平面,由面面垂直的判定定理知,需在某個(gè)平面上找到某條直線垂直于另一個(gè)平面,通過(guò)觀察分析,平面內(nèi)直線平面.要證明平面,又轉(zhuǎn)化為線面垂直問(wèn)題, ⊥平面,菱形中, ,又平面 .

2建立空間直角坐標(biāo)系,分別求出平面平面DFC的法向量,再求出兩個(gè)法向量的夾角的余弦值,即可得二面角的余弦值.

試題解析:

1⊥平面

在菱形中,

平面

平面∴平面⊥平面

2)連接、交于點(diǎn),以為坐標(biāo)原點(diǎn),以軸,以 軸,如圖建立空間直角坐標(biāo)系.

,同理

,,

設(shè)平面的法向量

,則

設(shè)平面DFC的法向量

,則

設(shè)二面角,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正三棱柱ABC=A1B1C1的各棱長(zhǎng)都是4,E是BC的中點(diǎn),動(dòng)點(diǎn)F在側(cè)棱CC1上,且不與點(diǎn)C重合.

(1)當(dāng)CF=1時(shí),求證:EF⊥A1C;
(2)設(shè)二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在實(shí)數(shù)集R中定義一種運(yùn)算“⊙”,具有性質(zhì):①對(duì)任意a、b∈R,a⊙b=b⊙a(bǔ);②a⊙0=a;③對(duì)任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)﹣2c,則函數(shù)f(x)=x⊙ 的最小值是(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=PA=4,A點(diǎn)在PD上的射影為G點(diǎn),E點(diǎn)在AB上,平面PCE⊥平面PCD.
(1)求證:AG⊥平面PCD;
(2)求直線PD與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷正確的是 . (填寫所有正確的序號(hào)) ①若sinx+siny= ,則siny﹣cos2x的最大值為
②函數(shù)y=sin(2x+ )的單調(diào)增區(qū)間是[kπ﹣ ,kπ+ ],k∈Z;
③函數(shù)f(x)= 是奇函數(shù);
④函數(shù)y=tan 的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ax﹣lnx,x∈(0,e],其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和極值;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
(3)證明:(1﹣ )( )( )…( )<e33n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx.
(1)當(dāng)x∈[0, ]時(shí),求f(x)的值域;
(2)用五點(diǎn)法在圖中作出y=f(x)在閉區(qū)間[﹣ , ]上的簡(jiǎn)圖;
(3)說(shuō)明f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎樣的變化得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某正弦交流電的電壓v(單位V)隨時(shí)間t(單位:s)變化的函數(shù)關(guān)系是v=120 sin(100πt﹣ ),t∈[0,+∞).
(1)求該正弦交流電電壓v的周期、頻率、振幅;
(2)若加在霓虹燈管兩端電壓大于84V時(shí)燈管才發(fā)光,求在半個(gè)周期內(nèi)霓虹燈管點(diǎn)亮的時(shí)間?( 取 ≈1.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,兩圓內(nèi)切于點(diǎn)T,大圓的弦AB切小圓于點(diǎn)C.TA,TB與小圓分別相交于點(diǎn)EF.FE的延長(zhǎng)線交兩圓的公切線TP于點(diǎn)P.

求證:(1) ;

(2)AC·PFBC·PT.

查看答案和解析>>

同步練習(xí)冊(cè)答案