【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)估計這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

3)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為優(yōu)秀,比賽成績低于80分為非優(yōu)秀.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99.9%的把握認為比賽成績是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計

男生

40

女生

50

合計

100

參考公式及數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1274 3)見解析,沒有的把握認為比賽成績是否優(yōu)秀與性別有關(guān)

【解析】

1)根據(jù)各小矩形面積之和為1,即可解方程求出的值;

2)由頻率分布直方圖可知,平均成績?yōu)楦餍【匦蔚拿娣e與各底邊中點值的乘積之和,即可求出;

3)根據(jù)題意填寫列聯(lián)表,計算的觀測值,對照臨界值即可得出結(jié)論.

1)由題可得

解得

2)平均成績?yōu)椋?/span>

3)由(2)知,在抽取的名學(xué)生中,比賽成績優(yōu)秀的有人,由此可得完整的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

合計

男生

女生

合計

的觀測值

∴沒有的把握認為比賽成績是否優(yōu)秀與性別有關(guān)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若的極值點,求的極大值;

2)求實數(shù)的范圍,使得恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式的解集為,且中只有一個整數(shù),則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機各選一匹進行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點在拋物線上,直線與拋物線C交于AB兩點,且直線OAOB的斜率之和為

1)求ak的值;

2)若,設(shè)直線y軸交于D點,延長MD與拋物線C交于點N,拋物線C在點N處的切線為n,記直線n,x軸圍成的三角形面積為S.求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)對參加“社會實踐活動”的全體志愿者進行學(xué)分考核,因該批志愿者表現(xiàn)良好,大學(xué)決定考核只有合格和優(yōu)秀兩個等次,若某志愿者考核合格,授予個學(xué)分;考核優(yōu)秀,授予個學(xué)分,假設(shè)該大學(xué)志愿者甲、乙、丙考核優(yōu)秀的概率為、、.他們考核所得的等次相互獨立.

1)求在這次考核中,志愿者甲、乙、丙三人中至少一名考核為優(yōu)秀的概率;

2)記在這次考核中甲、乙、丙三名志愿者所得學(xué)分之和為隨機變量,求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱錐P-ABCD中,PA平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且ABCD,BAD=90°.

(1)求證:BCPC

(2)PB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)存在,對任意,有不等式成立,求實數(shù)的取值范圍;

2)如果存在、,使得成立,求滿足條件的最大整數(shù)

3)對任意,存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案