【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)估計這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(3)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99.9%的把握認為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)(2)74 (3)見解析,沒有的把握認為“比賽成績是否優(yōu)秀與性別有關(guān)”.
【解析】
(1)根據(jù)各小矩形面積之和為1,即可解方程求出的值;
(2)由頻率分布直方圖可知,平均成績?yōu)楦餍【匦蔚拿娣e與各底邊中點值的乘積之和,即可求出;
(3)根據(jù)題意填寫列聯(lián)表,計算的觀測值,對照臨界值即可得出結(jié)論.
(1)由題可得
解得.
(2)平均成績?yōu)椋?/span>
(3)由(2)知,在抽取的名學(xué)生中,比賽成績優(yōu)秀的有人,由此可得完整的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | |||
女生 | |||
合計 |
∵的觀測值,
∴沒有的把握認為“比賽成績是否優(yōu)秀與性別有關(guān)”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式的解集為,且中只有一個整數(shù),則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機各選一匹進行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點在拋物線上,直線與拋物線C交于A,B兩點,且直線OA,OB的斜率之和為.
(1)求a和k的值;
(2)若,設(shè)直線與y軸交于D點,延長MD與拋物線C交于點N,拋物線C在點N處的切線為n,記直線n,與x軸圍成的三角形面積為S.求S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)對參加“社會實踐活動”的全體志愿者進行學(xué)分考核,因該批志愿者表現(xiàn)良好,大學(xué)決定考核只有合格和優(yōu)秀兩個等次,若某志愿者考核合格,授予個學(xué)分;考核優(yōu)秀,授予個學(xué)分,假設(shè)該大學(xué)志愿者甲、乙、丙考核優(yōu)秀的概率為、、.他們考核所得的等次相互獨立.
(1)求在這次考核中,志愿者甲、乙、丙三人中至少一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名志愿者所得學(xué)分之和為隨機變量,求隨機變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求證:BC⊥PC;
(2)求PB與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)存在,對任意,有不等式成立,求實數(shù)的取值范圍;
(2)如果存在、,使得成立,求滿足條件的最大整數(shù);
(3)對任意,存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com