【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點,點F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:

(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

【答案】
(1)解:∵D,E分別為AB,BC的中點,

∴DE為△ABC的中位線,

∴DE∥AC,

∵ABC﹣A1B1C1為棱柱,

∴AC∥A1C1

∴DE∥A1C1,

∵A1C1平面A1C1F,且DE平面A1C1F,

∴DE∥A1C1F


(2)解:∵ABC﹣A1B1C1為直棱柱,

∴AA1⊥平面A1B1C1

∴AA1⊥A1C1,

又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1平面AA1B1B,

∴A1C1⊥平面AA1B1B,

∵DE∥A1C1,

∴DE⊥平面AA1B1B,

又∵A1F平面AA1B1B,

∴DE⊥A1F,

又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D平面B1DE,

∴A1F⊥平面B1DE,

又∵A1F平面A1C1F,

∴平面B1DE⊥平面A1C1F


【解析】(1)通過證明DE∥AC,進而DE∥A1C1 , 據(jù)此可得直線DE∥平面A1C1F1;(2)通過證明A1F⊥DE結(jié)合題目已知條件A1F⊥B1D,進而可得平面B1DE⊥平面A1C1F.
【考點精析】利用直線與平面平行的判定和平面與平面垂直的判定對題目進行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求f(1),f[f(﹣2)]的值;
(2)若f(a)=10,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的左右頂點分別為A(﹣2,0),B(2,0),橢圓上除A、B外的任一點C滿足kACkBC=﹣

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點P(4,0)任作一條直線l與橢圓C交于不同的兩點M,N,在x軸上是否存在點Q,使得∠PQM+∠PQN=180°?若存在,求出點Q的坐標(biāo);若不存在,請說明現(xiàn)由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求在區(qū)間上的極小值和極大值點;

(2)求為自然對數(shù)的底數(shù))上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 、 是兩兩不等的實數(shù),點 , ,點 , ,則直線 的傾斜角為(
A.30°
B.45°
C.60°
D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cos = ,cos cos = ,cos cos cos = ,…,根據(jù)這些結(jié)果,猜想出的一般結(jié)論是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點,若過直徑CD與點E的平面與圓錐側(cè)面的交線是以E為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點P的距離為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】EC垂直Rt△ABC的兩條直角邊,D是斜邊AB的中點,AC=6,BC=8,EC=12,則DE的長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐A﹣BCDE中,底面BCDE為平行四邊形,平面ABE⊥平面BCDE,AB=AE,DB=DE,∠BAE=∠BDE=90°
(1)求異面直線AB與DE所成角的大;
(2)求二面角B﹣AE﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案