【題目】設(shè):實(shí)數(shù)滿足,其中;:實(shí)數(shù)滿足.

(1),且為真,為假,求實(shí)數(shù)的取值范圍;

(2)的充分不必要條件,求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】試題分析:第一步首先把a=1代入求出p所表示的含義,解不等式組搞清q的含義,根據(jù)為真,為假,求出x的范圍,第二步的充分不必要條件的等價(jià)關(guān)系為,說明所表示的集合是所表示的集合的真子集,針對(duì)為正、負(fù)兩種情況按要求討論解決.

試題解析:

(1)當(dāng)為真時(shí),當(dāng)為真時(shí)

因?yàn)?/span>為真,為假,所以,一真一假,

假,則,解得;

真,則,解得

綜上可知,實(shí)數(shù)的取值范圍為.

(2)由(1)知,當(dāng)為真時(shí),

因?yàn)?/span>的充分不必要條件,所以的必要不充分條件,

因?yàn)?/span>為真時(shí),若,有的真子集,

所以,解得:,

因?yàn)?/span>為真時(shí),若,有的真子集,

所以,不等式組無解

綜上所述:實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)X的分布列為

X

1

2

3

4

5

P

0.4

0.2

0.2

0.1

0.1

商場(chǎng)經(jīng)銷一件該商品,采用1期付款,其利潤(rùn)為200元;分2期或3期付款,其利潤(rùn)為250元;分4期或5期付款,其利潤(rùn)為300元.Y表示經(jīng)銷一件該商品的利潤(rùn).

(1)求事件:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率P(A);

(2)求Y的分布列及E(Y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)類比中,正確的個(gè)數(shù)為

(1)若一個(gè)偶函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為奇函數(shù)。將此結(jié)論類比到奇函數(shù)的結(jié)論為:若一個(gè)奇函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為偶函數(shù)。

(2)若雙曲線的焦距是實(shí)軸長(zhǎng)的2倍,則此雙曲線的離心率為2.將此結(jié)論類比到橢圓的結(jié)論為:若橢圓的焦距是實(shí)軸長(zhǎng)的一半,則此橢圓的離心率為.

(3)若一個(gè)等差數(shù)列的前3項(xiàng)和為1,則該數(shù)列的第2項(xiàng)為.將此結(jié)論類比到等比數(shù)列的結(jié)論為:若一個(gè)等比數(shù)列的前3項(xiàng)積為1,則該數(shù)列的第2項(xiàng)為1

(4)在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2,則它們的面積比為1:4.將此結(jié)論類比到空間中的結(jié)論為:在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積比為1:8.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x﹣a(x+1)ln(x+1),(x>﹣1,a≥0)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),若方程f(x)=t在 上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(Ⅲ)證明:當(dāng)m>n>0時(shí),(1+m)n<(1+n)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ ,g(x)=x2﹣2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的值域;
(2)已知銳角△ABC的兩邊長(zhǎng)分別為函數(shù)f(x)的最大值與最小值,且△ABC的外接圓半徑為 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△內(nèi)接于圓是圓的直徑,四邊形為平行四邊形,平面,.

(1)求證:⊥平面;

(2)設(shè),表示三棱錐的體積,求函數(shù)的解析式及最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(﹣1,9)時(shí),f(x)=x2﹣2x , 則函數(shù)f(x)在[0,2016]上的零點(diǎn)個(gè)數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2009年廣東卷文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1200編號(hào),并按編號(hào)順序平均分為40組(15號(hào),610號(hào),196200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是 。若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取 .

2

查看答案和解析>>

同步練習(xí)冊(cè)答案