△ABC中,tanC=
5
2
,AB=2
5
,AC=6,則∠B=( 。
A、
π
2
B、
π
3
C、
π
4
D、
π
6
考點:正弦定理
專題:解三角形
分析:利用tanC求得inC的值,然后利用正弦定理求得sinB,進而求得B.
解答: 解:依題意知
tanC=
sinC
cosC
=
5
2
sin2C+cos2C=1
,求得sinC=
5
3
,
AB
sinC
=
AC
sinB

∴sinB=
AC
AB
•sinC=
6
2
5
×
5
3
=1,
∴∠B=
π
2

故選A.
點評:本題主要考查了正弦定理的應用,同角三角函數(shù)基本關系.考查了學生對基礎的熟練掌握.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零實數(shù),若 f(2001)=1,則f(2005)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A、B、C所對的邊分別為a、b、c,若A=
π
3
,a=
3
,則b2+c2的取值范圍是( 。
A、[3,6]
B、[2,8]
C、(2,6)
D、(3,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,則該程序運行后輸出的S的值為( 。
A、
1
8
B、
1
4
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A=﹛x|x-2>0﹜,B=﹛x|x|≤1﹜.則(∁UA)∪B=( 。
A、{x|-1≤x≤1}
B、{x|-1≤x≤1或x>2}
C、{x|-1≤x≤2}
D、{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足(z-3)(2-i)=5(i為虛數(shù)單位),則在復平面內z對應的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=5-cos(4x+
π
9
)的最大值是( 。
A、1B、-1C、4D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校組建由2名男選手和n名女選手的“漢字聽寫大會”集訓隊,每次比賽均從集訓隊中任選2名選手參賽.
(Ⅰ)若n=2,記某次參賽被選中的男選手人數(shù)為隨機變量X,求隨機變量X的分布列和數(shù)學期望;
(Ⅱ)若n≥2,該校要參加三次“漢字聽寫大會”比賽,每次從集訓隊中選2名選手,試問:當n為何值時,三次比賽恰有一次參賽選手性別相同的概率取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡求值:
(1)化簡:a2cos0-b2sin
2
-abcosπ+absin
π
2
;
(2)求值:
3
4
tan2
π
6
+tan
π
4
-cos2
π
3
-2sin
π
2

查看答案和解析>>

同步練習冊答案