7.已知四棱錐P-ABCD,底面ABCD是∠A=60°、邊長為a的菱形,又PD⊥底面 ABCD,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)直線PB與平面PCD所成角的正弦值.

分析 (1)取PB中點Q,連結(jié)MQ、NQ,利用三角形中位線定理和菱形的性質(zhì),證出DN∥MQ.利用線面平行判定定理,即可證出DN∥平面PMB;
(2)由菱形ABCD中∠A=60°,得到△ABD是正三角形,從而MB⊥AD.由PD⊥底ABCD得到PD⊥MB,利用線面垂直的判定定理,證出MB⊥平面PAD,結(jié)合面面垂直判定定理可得平面PMB⊥平面PAD;
(3)證明△BCD為等邊三角形,設CD中點為E,連接PE,DE,可得∠PBE為直線PB與平面PCD所成角.

解答 (1)證明:取PB中點Q,連結(jié)MQ、NQ,
因為M、N分別是棱AD、PC中點,
所以QN∥BC∥MD,且QN=MD,于是DN∥MQ.
∵MQ?平面PMB,DN?平面PMB
∴DN∥平面PMB;…(5分)
(2)證明:∵PD⊥底ABCD,MB?平面ABCD,
∴PD⊥MB
又∵底面ABCD為菱形,∠A=60°且M為AD中點,
∴MB⊥AD.
又∵AD、PD是平面PAD內(nèi)的相交直線,∴MB⊥平面PAD.
∵MB?平面PMB,∴平面PMB⊥平面PAD; …(8分)
(3)解:設CD中點為E,連接PE,DE,
∵底面ABCD是∠A=60°、邊長為a 的菱形
∴△BCD是等邊三角形,
∴BE⊥DC,
∵PD⊥底面 ABCD,
∴PD⊥BE,
∴BE⊥平面PCD,
∴∠PBE為直線PB與平面PCD所成角,
∵BE=$\frac{\sqrt{3}}{2}$a,PA=$\sqrt{2}a$,
∴sin∠BPE=$\frac{\sqrt{6}}{4}$…(12分)

點評 本題給出特殊的四棱錐,求證線面平行、面面垂直并求直線與平面所成的角,著重考查了空間平行、垂直位置關(guān)系的判斷與證明和空間角的求法等知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)和圓O:x2+y2=a2,F(xiàn)1(-1,0),F(xiàn)2(1,0)分別是橢圓的左、右兩焦點,過F1且傾斜角為α$({α∈({0,\frac{π}{2}}]})$的動直線l交橢圓C于A,B兩點,交圓O于P,Q兩點(如圖所示,點A在x軸上方).當α=$\frac{π}{4}$時,弦PQ的長為$\sqrt{14}$. 
(1)求圓O與橢圓C的方程;
(2)若2|BF2|=|AF2|+|AB|,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在平面直角坐標系xOy中,以x軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓交于A,B兩點.已知$A(\frac{{\sqrt{5}}}{5},\;\frac{{2\sqrt{5}}}{5})\;,\;\;B(\frac{{7\sqrt{2}}}{10},\;\frac{{\sqrt{2}}}{10})$
(1)求tan(α+β)的值;
(2)求2α+β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知四邊形ABCD滿足AD∥BC,BA=AD=DC=$\frac{1}{2}$BC=a,E是BC的中點,將△BAE沿著AE翻折成△B1AE,使平面B1AE⊥平面ABCD,F(xiàn),G分別為B1D,AE的中點.
(1)證明:B1E∥平面ACF;
(2)證明:平面B1GD⊥平面B1DC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設數(shù)列{an}滿足an=3an-1+2(n≥2,n∈N*),且a1=2,bn=log3(an+1).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.當x=2時,下面的程序運行的結(jié)果是15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,a,b,c分別是角A,B,C的對邊,$\overrightarrow{m}$=($\sqrt{3}$a,c)與$\overrightarrow{n}$=(1+cosA,sinC)為共線向量.
(1)求角A;
(2)若3bc=16-a2,且S△ABC=$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)$f(x)=cosx+{2^x}-\frac{1}{2}(x<0)$與g(x)=cosx+log2(x+a)圖象上存在關(guān)于y軸對稱的點,則a的取值范圍是( 。
A.$(-∞,-\sqrt{2})$B.$(-∞,-\frac{{\sqrt{2}}}{2})$C.$(-\sqrt{2},\frac{{\sqrt{2}}}{2})$D.$(-∞,\sqrt{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知拋物線x2=2px(p>0)經(jīng)過點線$M({\frac{1}{2},2})$,則它的準線方程為( 。
A.$y=-\frac{1}{32}$B.BC.CD.D

查看答案和解析>>

同步練習冊答案