已知橢圓的離心率為,且過點(diǎn)(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點(diǎn),且以PQ為對角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時直線的方程.

(1)(2)面積取最大值1,= 

解析試題分析:(Ⅰ)∵
故所求橢圓為:又橢圓過點(diǎn)()  ∴ ∴ ∴
(Ⅱ)設(shè)的中點(diǎn)為
將直線聯(lián)立得,
 ①
=
又(-1,0)不在橢圓上,依題意有整理得 ②…
由①②可得,∵, 設(shè)O到直線的距離為,則
 =
=…分)
當(dāng)的面積取最大值1,此時= ∴直線方程為= 
考點(diǎn):橢圓的方程性質(zhì)及直線與橢圓的位置關(guān)系
點(diǎn)評:直線與橢圓相交時常聯(lián)立方程,利用韋達(dá)定理設(shè)而不求的方程轉(zhuǎn)化求解出弦長,本題求解三角型面積最值轉(zhuǎn)化成二次函數(shù),有時利用均值不等式求最值,此題中第二小題屬于難題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動點(diǎn)的距離比它到軸的距離多一個單位.
(Ⅰ)求動點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)作曲線的切線,求切線的方程,并求出與曲線軸所圍成圖形的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線過點(diǎn)F交拋物線于A、B兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線交y軸于點(diǎn)M,且,m、n是實數(shù),對于直線,m+n是否為定值?若是,求出m+n的值,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過兩直線的交點(diǎn),且滿足下列條件的直線的方程.
(Ⅰ)和直線垂直;
(Ⅱ)在軸,軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)(2,1),平行于直線軸上的截距為,設(shè)直線交橢圓于兩個不同點(diǎn)、,

(1)求橢圓方程;
(2)求證:對任意的的允許值,的內(nèi)心在定直線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)橢圓的左、右焦點(diǎn)分別為,焦距為2,,過作垂直于橢圓長軸的弦長為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線l交橢圓于兩點(diǎn).并判斷是否存在直線l使得的夾角為鈍角,若存在,求出l的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知拋物線上一動點(diǎn),拋物線內(nèi)一點(diǎn),為焦點(diǎn)且的最小值為。
求拋物線方程以及使得|PA|+|PF|最小時的P點(diǎn)坐標(biāo);
過(1)中的P點(diǎn)作兩條互相垂直的直線與拋物線分別交于C、D兩點(diǎn),直線CD是否過一定點(diǎn)? 若是,求出該定點(diǎn)坐標(biāo); 若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
中心在原點(diǎn),長半軸長與短半軸長的和為9,離心率為0.6,求橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線,焦點(diǎn)為,頂點(diǎn)為,點(diǎn)在拋物線上移動,的中點(diǎn),的中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案