【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。
【答案】
(1)解:方法一:證明:連結(jié)AC,AC交BD于O,連結(jié)EO
∵底面ABCD是正方形,∴點(diǎn)O是AC的中點(diǎn)
在△PAC中,EO是中位線,∴PA∥EO
而EO平面EDB且PA平面EDB,
所以,PA∥平面EDB
方法二:證明:連結(jié)AC,AC交BD于G,連結(jié)EG
依題意得
∵底面ABCD是正方形,∴G是此正方形的中心,故點(diǎn)G的坐標(biāo)為 且
∴ ,這表明PA∥EG
而EG平面EDB且PA平面EDB,∴PA∥平面EDB
(2)解:方法一:證明:
∵PD⊥底面ABCD且DC底面ABCD,∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜邊PC的中線,
∴DE⊥PC ①
同樣由PD⊥底面ABCD,得PD⊥BC
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC
而DE平面PDC,∴BC⊥DE ②
由①和②推得DE⊥平面PBC
而PB平面PBC,∴DE⊥PB
又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD
方法二:證明;依題意得B(a,a,0),
又 ,故
∴PB⊥DE
由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD
(3)解:方法一:解:由(2)知,PB⊥DF,故∠EFD是二面角C﹣PB﹣D的平面角
由(2)知,DE⊥EF,PD⊥DB
設(shè)正方形ABCD的邊長為a,則 ,
在Rt△PDB中,
在Rt△EFD中, ,∴
所以,二面角C﹣PB﹣D的大小為
方法二:解:設(shè)點(diǎn)F的坐標(biāo)為(x0,y0,z0), ,則(x0,y0,z0﹣a)=λ(a,a,﹣a)
從而x0=λa,y0=λa,z0=(1﹣λ)a
所以
由條件EF⊥PB知, ,即 ,解得
∴點(diǎn)F的坐標(biāo)為 ,且 ,
∴
即PB⊥FD,故∠EFD是二面角C﹣PB﹣D的平面角
∵ ,且 , ,
∴
∴
所以,二面角C﹣PB﹣D的大小為 .
【解析】方法一:(1)連結(jié)AC,AC交BD于O,連結(jié)EO,利用三角形中位線的性質(zhì),可得PA∥EO,利用線面平行的判定可得結(jié)論;(2)證明DE⊥PC,BC⊥平面PDC,DE⊥平面PBC,可得DE⊥PB,利用線面垂直的判定定理,可得PB⊥平面EFD;(3)確定∠EFD是二面角C﹣PB﹣D的平面角,利用正弦函數(shù)即可求解;方法二:建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),設(shè)DC=a(1)連結(jié)AC,AC交BD于G,連結(jié)EG,證明 ,這表明PA∥EG,可得結(jié)論;(2)利用向量的數(shù)量積公式,證明PB⊥DE,再利用線面垂直的判定定理,可得結(jié)論;(3)確定∠EFD是二面角C﹣PB﹣D的平面角,利用向量的夾角公式,即可解決.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過點(diǎn)P(2,﹣1),且在兩坐標(biāo)軸上的截距之和為2,圓M的圓心在直線2x+y=0上,且與直線l相切于點(diǎn)P.
(1)求直線l的方程;
(2)求圓M的方程;
(3)求圓M在y軸上截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)當(dāng)x∈[0, ]時(shí),求| + |的取值范圍;
(2)若g(x)=( + ) ,求當(dāng)k為何值時(shí),g(x)的最小值為﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義域?yàn)閧x|x∈R,且x≠2},且y=f(x+2)是偶函數(shù),當(dāng)x<2時(shí),f(x)=|2x﹣1|,那么當(dāng)x>2時(shí),函數(shù)f(x)的遞減區(qū)間是( )
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊長,且acosB+bcosA=2ccosC.
(1)求角C的值;
(2)若c=4,a+b=7,求S△ABC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),關(guān)于的不等式的解集為,其中.
(1)求的值;
(2)令,若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍,并求出極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若,試討論關(guān)于的方程 的解的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣2)2+y2=9,直線l:x+y=0.
(1)求過圓C的圓心且與直線l垂直的直線n的方程;
(2)求與圓C相切,且與直線l平行的直線m的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax﹣1|﹣(a﹣1)x
(1)當(dāng)a= 時(shí),滿足不等式f(x)>1的x的取值范圍為;若函數(shù)f(x)的圖象與x軸沒有交點(diǎn),則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com