【題目】已知橢圓C: =1(a>b>0)與y軸的交點為A,B(點A位于點B的上方),F(xiàn)為左焦點,原點O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設(shè)b=2,直線y=kx+4與橢圓C交于不同的兩點M,N,求證:直線BM與直線AN的交點G在定直線上.

【答案】
(1)解:設(shè)F的坐標為(﹣c,0),依題意有bc= ab,

∴橢圓C的離心率e= =


(2)解:若b=2,由(1)得a=2 ,∴橢圓方程為

聯(lián)立方程組

化簡得:(2k2+1)x2+16kx+24=0,

由△=32(2k2﹣3)>0,解得:k2

由韋達定理得:xM+xN= …①,xMxN= …②

設(shè)M(xM,kxM+4),N(xN,kxN+4),

MB方程為:y= x﹣2,…③

NA方程為:y= x+2,…④

由③④解得:y=

= = =1

即yG=1,

∴直線BM與直線AN的交點G在定直線上


【解析】(1)設(shè)F的坐標為(﹣c,0),原點O到直線FA的距離為 b,列出方程,即可求解橢圓的離心率.(2)求出橢圓方程,聯(lián)立方程組 ,通過韋達定理,設(shè)M(xM , kxM+4),N(xN , kxN+4),
求出MB方程,NA方程,求出交點坐標,推出結(jié)果.
【考點精析】通過靈活運用橢圓的標準方程,掌握橢圓標準方程焦點在x軸:,焦點在y軸:即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某程序框圖如圖所示,其中 ,若輸出的 ,則判斷框內(nèi)應(yīng)填入的條件為(
A.n<2017
B.n≤2017
C.n>2017
D.n≥2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加. 現(xiàn)有來自甲協(xié)會的運動員3名,其中種子選手2名;乙協(xié)會的運動員5名,其中種子選手3名.從這8名運動員中隨機選擇4人參加比賽.
(1)設(shè)為事件“選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協(xié)會”求事件發(fā)生的概率
(2)設(shè)為選出的4人中種子選手的人數(shù),求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·陜西)如圖,一橫截面為等腰梯形的水渠,因泥沙沉積,導(dǎo)致水渠截面邊界呈拋物線型(圖中虛線表示),則原始的最大流量與當前最大流量的比值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(﹣1,4)及圓C:(x﹣2)2+(y﹣3)2=1.則下列判斷正確的序號為
①點P在圓C內(nèi)部;
②過點P做直線l,若l將圓C平分,則l的方程為x+3y﹣11=0;
③過點P做直線l與圓C相切,則l的方程為y﹣4=0或3x+4y﹣13=0;
④一束光線從點P出發(fā),經(jīng)x軸反射到圓C上的最短路程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m,n是兩條不同直線,是兩個不同平面,則下列命題正確的是
A.若垂直于同一平面,則平行
B.若m,n平行于同一平面,則m與n平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,g(x)=2x﹣1,則f(g(2))= , f[g(x)]的值域為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 右支上非頂點的一點A關(guān)于原點O的對稱點為B,F(xiàn)為其右焦點,若AF⊥FB,設(shè)∠ABF=θ且 ,則雙曲線離心率的取值范圍是(
A.
B.
C.
D.(2,+∞)

查看答案和解析>>

同步練習冊答案