【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知2bcosC=acosC+ccosA.

(1)求角C的大小;

(2)若b=2,c=,求a及△ABC的面積.

【答案】(1)C=;(2).

【解析】

(1)利用正弦定理將變換為角得cosC=,從而得解;
(2)由余弦定理可得a的值,進而利用面積公式即可得解.

(1)∵2bcosC=acosC+ccosA,

∴由正弦定理可得:2sinBcosC=sinAcosC+cosAsinC,

可得:2sinBcosC=sin(A+C)=sinB,

∵sinB>0,∴cosC=,

∵C∈(0,),∴C=

(2)∵b=2,c=,C=,

∴由余弦定理可得:7=a2+4﹣2×a,整理可得:a2﹣2a﹣3=0,

∴解得:a=3或﹣1(舍去),

∴△ABC的面積S=absinC=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(限定).

(1)寫出曲線的極坐標方程,并求交點的極坐標;

(2)射線與曲線分別交于點異于原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,若,且的圖象相鄰的對稱軸間的距離不小于.

(1)求的取值范圍.

(2)若當取最大值時, ,且在中, 分別是角的對邊,其面積,求周長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),記的解集為

(1)求集合(用區(qū)間表示);

(2)當時,求函數(shù)的最小值;

(3)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與的圖象關于對稱,且,函數(shù)的定義域為

(1)求的值;

(2)若函數(shù)上是單調遞增函數(shù),求實數(shù)的取值范圍;

(3)若函數(shù)的最大值為2,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),等腰直角三角形的底邊,點在線段上,,現(xiàn)將沿折起到的位置(如圖(2))

(1)求證:;

(2),直線與平面所成的角為,求長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產至今已有1300多年的歷史,對唐三彩的復制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產過程中,對仿制的100件工藝品測得其重量(單位: )數(shù)據(jù),將數(shù)據(jù)分組如下表:

1)在答題卡上完成頻率分布表;

2)以表中的頻率作為概率,估計重量落在中的概率及重量小于2.45的概率是多少?

3統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值例如區(qū)間的中點值是2.25作為代表.據(jù)此,估計這100個數(shù)據(jù)的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調性并求極值;

(Ⅱ)若點在函數(shù)上,當,且時,證明: 是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個關于圓錐曲線的命題:

①設A,B是兩個定點,k為非零常數(shù),若|PA|-|PB|=k,則P的軌跡是雙曲線;

②過定圓C上一定點A作圓的弦AB,O為原點,若.則動點P的軌跡是橢圓;

③方程的兩根可以分別作為橢圓和雙曲線的離心率;

④雙曲線與橢圓有相同的焦點.

其中正確命題的序號為________

查看答案和解析>>

同步練習冊答案