(本題9分)函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí)。
(Ⅰ)求的值;
(Ⅱ)求的解析式。

(Ⅰ),;(Ⅱ)

解析試題分析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0e/f/zpyez3.png" style="vertical-align:middle;" />是奇函數(shù),所以,               2分
。                        2分
(Ⅱ)設(shè),則               1分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0e/f/zpyez3.png" style="vertical-align:middle;" />是奇函數(shù),
所以。                    3分
所以。                         1分
考點(diǎn):函數(shù)解析式的求法;函數(shù)的奇偶性。
點(diǎn)評(píng):利用函數(shù)的奇偶性求函數(shù)的解析式,此類(lèi)問(wèn)題的一般做法是:①“求誰(shuí)設(shè)誰(shuí)”?即在哪個(gè)區(qū)間求解析式,x就設(shè)在哪個(gè)區(qū)間內(nèi);②要利用已知區(qū)間的解析式進(jìn)行代入;③利用f(x)的奇偶性寫(xiě)出-f(x)或f(-x),從而解出f(x)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/8/1dyvw4.png" style="vertical-align:middle;" />,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線軸的垂線,垂足分別為

(1)寫(xiě)出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問(wèn):是否為定值?若是,則求出該定值,若不是,則說(shuō)明理由;(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(11分)已知函數(shù)f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值;  (2)問(wèn)a為何值時(shí),函數(shù)的最小值是-4。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)已知函數(shù),
(Ⅰ)設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證: 當(dāng)時(shí),有
(Ⅲ)設(shè),當(dāng)時(shí),不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(Ⅰ) 若a =1,求函數(shù)的圖像在點(diǎn)處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)如果當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),求使成立的的取值范圍。(10分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求證:
方程的根一個(gè)在內(nèi),一個(gè)在內(nèi),一個(gè)在內(nèi).(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知f (x)=
(1)求函數(shù)f (x)的值域.
(2)若f (t)=3,求t的值.
(3)用單調(diào)性定義證明在[2,+∞)上單調(diào)遞增.

查看答案和解析>>

同步練習(xí)冊(cè)答案