f(x)=
x2       x≥0
x         x<0
,φ(x)=
x           x≥0
-x2        x<0
則當(dāng)x<0時,f[φ(x)]為( 。
A.-xB.-x2C.xD.x2
由于f(x)=
x2    x≥0
x      x<0
,φ(x)=
x       x≥0
-x2  x<0
,
則當(dāng)x<0時,φ(x)=-x2
∵x<0,∴-x2<0
所以f[φ(x)]=f(-x2)=-x2
故答案為 B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
x2       x≥0
x         x<0
,φ(x)=
x           x≥0
-x2        x<0
則當(dāng)x<0時,f[φ(x)]為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知φ(x)=
a
x+1
,a
為正常數(shù).(e=2.71828…);
(理科做)(1)若f(x)=lnx+φ(x),且a=
9
2
,求函數(shù)f(x)在區(qū)間[1,e]上的最大值與最小值
(2)若g(x)=|lnx|+φ(x),且對任意x1,x2∈(0,2],x1≠x2都有
g(x2)-g(x1)
x2-x1
<-1
,求a的取值范圍.
(文科做)(1)當(dāng)a=2時描繪?(x)的簡圖
(2)若f(x)=?(x)+
1
?(x)
,求函數(shù)f(x)在區(qū)間[1,e]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)設(shè)函數(shù)f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函數(shù)y=g(x)圖象恒過定點P,且點P在y=f(x)的圖象上,求m的值;
(Ⅱ)當(dāng)a=8時,設(shè)F(x)=f′(x)+g(x),討論F(x)的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè)G(x)=
f(x),x≤1
g(x),x>1
,曲線y=G(x)上是否存在兩點P、Q,使△OPQ(O為原點)是以O(shè)為直角頂點的直角三角形,且該三角形斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
-x2+x,(x>0)
0,,(x=0)
x2-x,(x<0)
,則f[f(2)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-1|,g(x)=k|x-1|.
(Ⅰ)已知0<m<n,若f(m)=f(n),求m2+n2的值;
(Ⅱ)設(shè)F(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,當(dāng)k=
1
2
時,求F(x)在(-∞,0)上的最小值;
(Ⅲ)求函數(shù)G(x)=f(x)+g(x)在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案