【題目】已知函數(shù).
當(dāng)時(shí),試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;
若不等式在上恒成立,求實(shí)數(shù)m的取值范圍.
【答案】(1)見解析; (2).
【解析】
(1)根據(jù)函數(shù)單調(diào)性的證明的定義法,取值,做差,若, ,判符號(hào);(2)方法一,將問題等價(jià)于 恒成立,轉(zhuǎn)化為軸動(dòng)區(qū)間定的問題;方法二,變量分離,轉(zhuǎn)化為 恒成立,轉(zhuǎn)化為函數(shù)求最值問題.
(1)當(dāng)時(shí),,此時(shí)在上單調(diào)遞增,證明如下:
對(duì)任意的,,若,
,
由,故有:,,
因此:,,
故有在上單調(diào)遞增;
(2)方法一:不等式在上恒成立
,
取,對(duì)稱軸
當(dāng)時(shí),對(duì)稱軸,
∴在上單調(diào)遞增, ,
故滿足題意,
當(dāng)時(shí),對(duì)稱軸,
又在上恒成立,
故
解得:,
故
綜上所述,實(shí)數(shù)的取值范圍為.
方法二:不等式在上恒成立
。
取
由結(jié)論:定義在上的函數(shù),當(dāng)且僅當(dāng)時(shí)取得最小值.
故 。
當(dāng)且僅當(dāng),即時(shí)函數(shù)取得最小值.
故,即實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB為圓O的直徑,C,D是圓O上的兩個(gè)點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(1)求證:AC是∠DAB的平分線;
(2)求證:OF∥AG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0且滿足不等式22a+1>25a﹣2.
(1)求實(shí)數(shù)a的取值范圍;
(2)求不等式loga(3x+1)<loga(7﹣5x);
(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廣場(chǎng)舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,其兼具文化性和社會(huì)性,是精神文明建設(shè)成果的一個(gè)重要指標(biāo)和象征.2015年某高校社會(huì)實(shí)踐小組對(duì)某小區(qū)跳廣場(chǎng)舞的人的年齡進(jìn)行了凋查,隨機(jī)抽取了40名廣場(chǎng)舞者進(jìn)行調(diào)查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.
(1)估計(jì)在40名廣場(chǎng)舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場(chǎng)舞者年齡的中位數(shù)和平均數(shù)的估計(jì)值;
(3)若從年齡在[20,40)中的廣場(chǎng)舞者中任取2名,求這兩名廣場(chǎng)舞者年齡在[30,40)中的人數(shù)X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是R上的偶函數(shù),其中e是自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)的值;
(2)探究函數(shù)在上的單調(diào)性,并證明你的結(jié)論;
(3)若函數(shù)有零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,有兩種方式,甲為投資債券等穩(wěn)健型產(chǎn)品,乙為投資股票等風(fēng)險(xiǎn)型產(chǎn)品,設(shè)投資甲、乙兩種產(chǎn)品的年收益分別為、萬元,根據(jù)長期收益率市場(chǎng)預(yù)測(cè),它們與投入資金萬元的關(guān)系分別為,,(其中,,都為常數(shù)),函數(shù),對(duì)應(yīng)的曲線,如圖所示.
(1)求函數(shù)、的解析式;
(2)若該家庭現(xiàn)有萬元資金,全部用于理財(cái)投資,問:如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線 ( )的焦點(diǎn)為 ,已知點(diǎn) , 為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足 .過弦 的中點(diǎn) 作拋物線準(zhǔn)線的垂線 ,垂足為 ,則 的最大值為__________.
【答案】1
【解析】設(shè),在三角形ABF中,用余弦定理得到
,
故最大值為1.
故答案為:1.
點(diǎn)睛:本題主要考查了拋物線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義。一般和拋物線有關(guān)的小題,很多時(shí)可以應(yīng)用結(jié)論來處理的;平時(shí)練習(xí)時(shí)應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用。尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實(shí)現(xiàn)點(diǎn)點(diǎn)距和點(diǎn)線距的轉(zhuǎn)化。
【題型】填空題
【結(jié)束】
17
【題目】設(shè) 的內(nèi)角 , , 所對(duì)的邊分別為 , , ,且 , .
(1)當(dāng) 時(shí),求 的值;
(2)當(dāng)的面積為 時(shí),求的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為奇函數(shù),為偶函數(shù),且.
(Ⅰ)求函數(shù)及的解析式;
(Ⅱ)用函數(shù)單調(diào)性的定義證明:函數(shù)在上是減函數(shù);
(Ⅲ)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com