某籃球隊(duì)甲、乙兩名隊(duì)員,在預(yù)賽中每場(chǎng)比賽得分的原始記錄如右莖葉圖所示,若要從甲、乙兩人中選拔一人參加決賽,則應(yīng)該選擇
 
更合理.
考點(diǎn):莖葉圖
專題:概率與統(tǒng)計(jì)
分析:根據(jù)數(shù)據(jù)計(jì)算甲、乙隊(duì)員的平均數(shù)與方差,比較即可得出結(jié)論.
解答: 解:甲隊(duì)員的平均數(shù)是
.
x
=
1
5
(27+35+32+33+38)=33,
乙隊(duì)員的平均數(shù)是
.
x
=
1
5
(12+29+32+34+36)=28.6;
甲隊(duì)員的方差是s2=
1
5
[(27-33)2+(35-33)2+(32-33)2+(33-33)2+(38-33)2]=13.2,
乙隊(duì)員的方差是s2=
1
5
[(12-28.6)2+(29-28.6)2+(32-28.6)2+(34-28.6)2+(36-28.6)2]=74.24;
比較平均數(shù)與方差得,甲隊(duì)員平均得分高且更穩(wěn)定些,∴選擇甲更合理.
故答案為:甲.
點(diǎn)評(píng):本題考查了利用平均數(shù)與方差估計(jì)統(tǒng)計(jì)結(jié)果的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|sinx=0},N={x|-1<x<4},則M∩N等于(  )
A、{0,π}
B、{x|0≤x≤π}
C、{x|-
π
2
≤x≤
π
2
}
D、{-
π
2
π
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,滿足關(guān)系Sn=2an-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且bn=
1
(10g2an)2
,求證:對(duì)任意正整數(shù)n,總有Tn
61
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和為Sn,且a1=1,an+1=
1
2
Sn(n=1,2,3,…)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)bn=log 
3
2
(3an+1)時(shí),求證:數(shù)列{
1
bnbn+1
}的前n項(xiàng)和Tn=
n
1+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:
x=t
y=2t+5
(t為參數(shù))
與圓O:
x=cosθ
y=sinθ
(θ為參數(shù))
,那么圓O上的點(diǎn)到直線的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義函數(shù)f(x)=m*x,其中m*x=
1,x<0
mx,x≥0

(1)若m=
1
2
,函數(shù)y=f(x)-a在區(qū)間[1,2]內(nèi)存在零點(diǎn),則實(shí)數(shù)a的取值范圍是
 
;
(2)設(shè)M=e*a+e*b,N=2e*
a+b
2
,則M,N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,AB=2,AC=1,求B的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校舉行2015年元旦匯演,氣味評(píng)委為某班的小品打出的分?jǐn)?shù)如莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)為
 
,方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,該程序框圖的運(yùn)算結(jié)果是( 。
A、-4B、-7
C、-10D、-13

查看答案和解析>>

同步練習(xí)冊(cè)答案