如圖D在AB上,DE∥BC,DF∥AC,AE=4,EC=2,BC=8.則CF=
 

考點:平行線分線段成比例定理
專題:選作題,立體幾何
分析:利用平行線分線段成比例定理,即可求得結論.
解答: 解:∵DE∥BC,AE=4,EC=2,
∴AD:DB=2:1,
∵DF∥AC,
∴CF:CB=AD:AB=2:3,
∵BC=8,
∴CF=
16
3

故答案為:
16
3
點評:本題考查平行線分線段成比例定理,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知矩陣A=
2n
m1
的一個特征值為λ=2,它對應的一個特征向量為
α
=
1
2

(1)求m與n的值;     
(2)求A-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
25
+
y2
9
=1的左焦點為F,點P的坐標為(2,-1),在橢圓上存在一點Q,使|QF|+
4
5
|PQ|的值最小,此最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|2x+1|-|x|.
(1)求不等式f(x)>0的解集;
(2)若存在x∈R,使得f(x)≤m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,ABCD是邊長為1的正方形,D1B與平面ABCD所成的角為45°,則棱AA1的長為
 
,二面角B-DD1-C的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列命題:①y=cos(x-
π
4
)cos(x+
π
4
)的圖象中相鄰兩個對稱中心的距離為π,②y=
x+3
x-1
的圖象關于點(-1,1)對稱,③關于x的方程ax2-2ax-1=0有且僅有一個實根,則a=-1,④命題p:對任意x∈R,都有sinx≤1;則¬p:存在x∈R,使得sinx>1.其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=2n2-3n,而a1,a3,a5,a7,…組成一新數(shù)列{bn},則數(shù)列{bn}的前n項和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)、g(x)滿足:對任意x,y∈R有f(x-y)=f(x)g(y)-f(y)g(x)且f(1)≠0.若f(1)=f(2),則g(-1)+g(1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是橢圓
x2
169
+
y2
25
=1上一點,F(xiàn)1、F2是橢圓的焦點,若|PF1|等于4,則|PF2|等于(  )
A、22B、21C、20D、13

查看答案和解析>>

同步練習冊答案