【題目】用紅、黃、藍(lán)、白、黑五種顏色涂在如圖所示的四個(gè)區(qū)域內(nèi),每個(gè)區(qū)域涂一種顏色,相鄰兩個(gè)區(qū)域涂不同的顏色,五種顏色可以反復(fù)使用,共有___________種不同的涂色方法?

【答案】.

【解析】

根據(jù)題意,分2步進(jìn)行分析:先涂1號(hào)區(qū)域,易得其有5種涂法,再分類(lèi)討論其他區(qū)域:①若2、4號(hào)區(qū)域涂不同的顏色,②若2、4號(hào)區(qū)域涂相同的顏色,分別求出2、3、4號(hào)區(qū)域的涂色方案數(shù)目再相加可得其他區(qū)域涂色方案數(shù)目;由分步計(jì)數(shù)原理計(jì)算可得答案.

對(duì)于1號(hào)區(qū)域,有5種顏色可選,即有5種涂法,
分類(lèi)討論其他區(qū)域:①若2、4號(hào)區(qū)域涂不同的顏色,則有A42=12種涂法,3號(hào)區(qū)域有3種涂法,此時(shí)2、3、4號(hào)區(qū)域有12×3=36種涂法;
②若2、4號(hào)區(qū)域涂相同的顏色,則有4種涂法,3號(hào)區(qū)域有4種涂法,此時(shí)2、3、4號(hào)區(qū)域有有4×4=16種涂法;
則共有5×(36+16)=5×52=260種;
故答案為260.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的焦點(diǎn)分別為 、 ,點(diǎn)P在橢圓C上,滿足|PF1|=7|PF2|,tan∠F1PF2=4
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)A(1,0),試探究是否存在直線l:y=kx+m與橢圓C交于D、E兩點(diǎn),且使得|AD|=|AE|?若存在,求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E的中心在坐標(biāo)原點(diǎn),左、右焦點(diǎn)F1、F2分別在x軸上,離心率為 ,在其上有一動(dòng)點(diǎn)A,A到點(diǎn)F1距離的最小值是1,過(guò)A、F1作一個(gè)平行四邊形,頂點(diǎn)A、B、C、D都在橢圓E上,如圖所示.
(Ⅰ)求橢圓E的方程;
(Ⅱ)判斷ABCD能否為菱形,并說(shuō)明理由.
(Ⅲ)當(dāng)ABCD的面積取到最大值時(shí),判斷ABCD的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.

【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) .

【解析】試題分析】(I)的中點(diǎn)為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.

試題解析】

證明:(Ⅰ)取的中點(diǎn)為,連接,

為等邊三角形,∴.

底面中,可得四邊形為矩形,∴,

,∴平面,

平面,∴.

,所以.

(Ⅱ)由面,

平面,所以為棱錐的高,

,知,

,

.

由(Ⅰ)知,,∴.

.

,可知平面,∴,

因此.

,,

的中點(diǎn),連結(jié),則,,

.

所以棱錐的側(cè)面積為.

型】解答
結(jié)束】
20

【題目】已知圓經(jīng)過(guò)橢圓 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是 . (寫(xiě)出所有正確說(shuō)法的序號(hào))
①若p是q的充分不必要條件,則p是q的必要不充分條件;
②命題“x∈R,x2+1>3x”的否定是“x∈R,x2+1<3x”;
③設(shè)x,y∈R.命題“若xy=0,則x2+y2=0”的否命題是真命題;
④若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n個(gè)非空子集(n≥2),定義aij= ,其中i,j=1,2,…,n,這樣得到的n2個(gè)數(shù)之和記為S(A1 , A2 , A3 , …,An),簡(jiǎn)記為S,下列三種說(shuō)法:①S與n的奇偶性相同;②S是n的倍數(shù);③S的最小值為n,最大值為n2 . 其中正確的判斷是(
A.①②
B.①③
C.②③
D.③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直四棱柱ABCD﹣A1B1C1D1底面是邊長(zhǎng)為1的正方形,高AA1= ,點(diǎn)A是平面α內(nèi)的一個(gè)定點(diǎn),AA1與α所成角為 ,點(diǎn)C1在平面α內(nèi)的射影為P,當(dāng)四棱柱ABCD﹣A1B1C1D1按要求運(yùn)動(dòng)時(shí)(允許四棱柱上的點(diǎn)在平面α的同側(cè)或異側(cè)),點(diǎn)P所經(jīng)過(guò)的區(qū)域的面積=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了了解某地區(qū)電視觀眾對(duì)某類(lèi)體育節(jié)目的收視情況隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖.將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為體育迷,已知體育迷中有10名女性.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為體育迷與性別有關(guān)?

(2)將日均收看該體育節(jié)目不低于50分鐘的觀眾稱為超級(jí)體育迷,已知超級(jí)體育迷中有2名女性,若從超級(jí)體育迷中任意選取2人,求至少有1名女性觀眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)上的點(diǎn)到它的兩個(gè)焦點(diǎn)的距離之和為4,以橢圓C的短軸為直徑的圓O經(jīng)過(guò)兩個(gè)焦點(diǎn),A,B是橢圓C的長(zhǎng)軸端點(diǎn).

(1)求橢圓C的標(biāo)準(zhǔn)方程和圓O的方程;
(2)設(shè)P、Q分別是橢圓C和圓O上位于y軸兩側(cè)的動(dòng)點(diǎn),若直線PQ與x平行,直線AP、BP與y軸的交點(diǎn)即為M、N,試證明∠MQN為直角.

查看答案和解析>>

同步練習(xí)冊(cè)答案