(本小題滿分12分)

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,且

點(diǎn)(1,)在橢圓C上.

(1)求橢圓C的方程;

(2)過(guò)的直線與橢圓相交于兩點(diǎn),且的面積為,求直線的方程.

 

【答案】

(1);(2).

【解析】

試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011314283162086712/SYS201301131429192146391904_DA.files/image003.png">,所以c=1,所以橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別為(-1,0),(1,0),再根據(jù)點(diǎn)P(1,)在橢圓C上,可知|PF1|+|PF2|=2a,求出a,進(jìn)而得到b,橢圓方程確定.

(2)設(shè)直線,因?yàn)檫^(guò)的直線與橢圓相交于兩點(diǎn),所以的面積可表示為,因而直線l的方程與橢圓方程聯(lián)立消去x得到關(guān)于y的一元二次方程,再利用韋達(dá)定理及可得到S關(guān)于t的函數(shù)關(guān)系式,再根據(jù)S=,可得到關(guān)于t的方程求出t的值,問(wèn)題得解.

(1)

,故所求直線方程為: .

考點(diǎn):橢圓的定義及標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系.

點(diǎn)評(píng):橢圓的定義是求橢圓標(biāo)準(zhǔn)方程的重要工具,要注意靈活運(yùn)用,能直到化繁為簡(jiǎn),簡(jiǎn)化計(jì)算的目的.直線與橢圓相交時(shí)要注意利用韋達(dá)定理及判別式解決.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案