精英家教網 > 高中數學 > 題目詳情
設等差數列滿足,則m的值為           (    )
A.B.C.D.26
C

試題分析:根據題意,由于等差數列滿足,則說明數列是首項為正數的遞減數列,那么可知, ,根據,可知當m=13時能成立,故選C.
點評:主要是考查了等差數列的通項公式和前n項和公式的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

定義:如果數列的任意連續(xù)三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.
(Ⅰ)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;
(Ⅲ)根據“保三角形函數”的定義,對函數,,和數列1,,()提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在等差數列中,已知,則為  ( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列是等差數列,且
(Ⅰ)求數列的通項公式;
(Ⅱ)令求數列前n項和的公式.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知是數列的前項和,且對任意,有
的通項公式;
求數列的前項和

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設等差數列的前n項和為,若,,則當取最小值時,=(      )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列項和為, ,則=(     )
A.70B.80C.90D.100

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義在(-∞,0)∪(0,+∞)上的函數f(x),如果對于任意給定的等比數列{an},{f(an)}仍是等比數列,則稱f(x)為“保等比數列函數”,F(xiàn)有定義在(    )
(-∞,0)∪(0,+∞)上的如下函數:①f(x)=x²;②f(x)=2x;③;④f(x)="ln|x" |。則其中是“保等比數列函數”的f(x)的序號為                           (     )
A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列中,當時,總有成立,且
(Ⅰ)證明:數列是等差數列,并求數列的通項公式;
(Ⅱ)求數列的前項和

查看答案和解析>>

同步練習冊答案