設(shè)x,y滿足約束條件數(shù)學(xué)公式,則z=3x+y的最大值是________.

8
分析:先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值,z=3x+y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可.
解答:在同一坐標(biāo)系中作出三條直線,可得x,y滿足約束條件
對(duì)應(yīng)的圖形是一個(gè)三角形區(qū)域,
將直線z=3x+y進(jìn)行平移,可得當(dāng)它經(jīng)過(guò)兩條直線
y=x和y=2x-2的交點(diǎn)(2,2)時(shí)
目標(biāo)函數(shù)z=3x+y=3×2+2=8為最大值.
故答案為:8
點(diǎn)評(píng):本小題是考查線性規(guī)劃問(wèn)題,本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案