9.函數(shù)y=loga(3x-5)+4(a>0且a≠1)的圖象恒過定點A,且點A在冪函數(shù)f(x)的圖象上,則f(3)=9.

分析 由loga1=0得3x-5=1,求出x的值以及y的值,即求出定點的坐標(biāo).再設(shè)出冪函數(shù)的表達式,利用點在冪函數(shù)的圖象上,求出α的值,然后求出冪函數(shù)的表達式即可得出答案.

解答 解:∵loga1=0,
∴當(dāng)3x-5=1,即x=2時,y=4,
∴點M的坐標(biāo)是P(2,4).
冪函數(shù)f(x)=xα的圖象過點M(2,4),
所以4=2α,解得α=2;
所以冪函數(shù)為f(x)=x2
則f(3)=9.
故答案為:9;

點評 本題考查對數(shù)函數(shù)的性質(zhì)和特殊點,主要利用loga1=0,考查求冪函數(shù)的解析式,同時考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{x}{x+1}$.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在平面四邊形ABCD中,若AB=2,CD=3,則$({\overrightarrow{AC}+\overrightarrow{DB}})•({\overrightarrow{AB}+\overrightarrow{CD}})$=(  )
A.-5B.0C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知一組數(shù)據(jù)x1,x2,x3,…,xn的方差是a,那么另一組數(shù)據(jù)x1-2,x2-2,x3-2,…,xn-2的方差是a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計算:tan45°+cos60°÷lne=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合P={1,3},則集合P的子集共有4個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{4x-4,x≤1}\\{{x}^{2}-4x+3,x>1}\end{array}\right.$,g(x)=-$\frac{1}{x}$,則函數(shù)h(x)=f(x)-g(x)的零點個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1(-3,0)、F2(3,0),直線y=kx與橢圓交于A、B兩點.
(1)若三角形AF1F2的周長為$4\sqrt{3}+6$,求橢圓的標(biāo)準(zhǔn)方程;
(2)若$2\sqrt{3}<a<3\sqrt{2}$,且以AB為直徑的圓過橢圓的右焦點,求直線y=kx斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=k(x+1)2-ln(x+1)(k∈R).
(1)當(dāng)k=$\frac{1}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)若x軸是曲線y=f(x)的一條切線,求實數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案