分析 由拋物線方程,求導,利用導數(shù)的幾何意義,求得P點的切線方程的斜率,求得切線方程,當x=-1時,求得N點坐標,由$\overrightarrow{PF}$=(1-x0,-y0),$\overrightarrow{FN}$=(-2,$\frac{2({x}_{0}-1)}{{y}_{0}}$),則$\overrightarrow{PF}$•$\overrightarrow{FN}$=0,$\overrightarrow{PF}$⊥$\overrightarrow{FN}$,由丨PQ丨=丨QF丨,則△NPQ≌△NPF,即可求得∠PNQ=∠PNF,即可求得∠PNF=∠NMF,即可求得MF=NF,則$\frac{MF}{NF}$=1,
解答 解:拋物線C:y2=4x的焦點為F(1,0),準線為l:x=-1,
拋物線y2=4x兩邊對x求導,可得2yy′=4,即y′=$\frac{2}{y}$,
過P(x0,y0)(y0≠0)的切線為l的斜率為$\frac{2}{{y}_{0}}$,切線的方程為y-y0=$\frac{2}{{y}_{0}}$(x-x0),
又y02=4x0,即有y0y=2(x+x0),
令x=-1,可得N(-1,$\frac{2({x}_{0}-1)}{{y}_{0}}$),
∴$\overrightarrow{PF}$=(1-x0,-y0),$\overrightarrow{FN}$=(-2,$\frac{2({x}_{0}-1)}{{y}_{0}}$),
∴$\overrightarrow{PF}$•$\overrightarrow{FN}$=-2(1-x0)-y0•$\frac{2({x}_{0}-1)}{{y}_{0}}$=0,
∴$\overrightarrow{PF}$⊥$\overrightarrow{FN}$,
過P做PQ垂直于x=-1,交x=-1于Q,
由橢圓的定義可知:丨PQ丨=丨QF丨,
∴△NPQ≌△NPF,
∴∠PNQ=∠PNF,
∵∠PNQ=∠NMF,
∴∠PNF=∠NMF,
∴MF=NF,
$\frac{MF}{NF}$=1,
故答案為:1.
點評 本題考查導數(shù)的幾何意義,向量數(shù)量積的坐標表示,直線垂直的充要條件,拋物線的性質(zhì)及相似三角形的性質(zhì)的綜合利用,考查數(shù)形結(jié)合思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4+2$\sqrt{3}$ | C. | 4+2$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若p,則q | B. | 若¬q,則p | C. | 若q,則¬p | D. | 若¬p,則q |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (17,25) | B. | (9,25) | C. | (8,25) | D. | (9,17) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com