11.方程$\frac{{x}^{2}}{25-k}-\frac{y^2}{9-k}$=1表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是( 。
A.(17,25)B.(9,25)C.(8,25)D.(9,17)

分析 由$\frac{{x}^{2}}{25-k}+\frac{{y}^{2}}{k-9}=1$,根據(jù)橢圓焦點在y軸上,列方程組即可求得k的取值范圍.

解答 解:由橢圓的方程:$\frac{{x}^{2}}{25-k}+\frac{{y}^{2}}{k-9}=1$,
可知:$\left\{\begin{array}{l}{-9+k>0}\\{25-k>0}\\{k-9>25-k}\end{array}\right.$,解得:17<k<25,
實數(shù)k的取值范圍(17,25),
故選A.

點評 本題考查橢圓的標準方程,橢圓的焦點位置,考查計算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+2,x≤a\\{x^2},x>a\end{array}\right.$若存在實數(shù)b,使函數(shù)g(x)=f(x)-b沒有零點,則a的取值范圍是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知拋物線C:y2=4x,過焦點F作與x軸垂直的直線l1,C上任意一點P(x0,y0)(y0≠0)處的切線為l,l與l1交于M,l與準線交于N,則$\frac{MF}{NF}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如果方程$\frac{x^2}{2-m}$+$\frac{y^2}{m+1}$=1表示焦點在x軸上的橢圓,那么實數(shù)m的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.(-∞,-1)C.(-1,$\frac{1}{2}$)D.(-∞,-1)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)y=f(x)的圖象與y=10x的圖象關(guān)于直線y=x對稱,則f(3)+f($\frac{10}{3}$)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某種產(chǎn)品的廣告費用支出x萬元與銷售額y萬元之間有如圖的對應數(shù)據(jù):
x24568
y3030505070
(Ⅰ)畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(Ⅲ)據(jù)此估計廣告費用為10萬元時,所得的銷售收入.
(參考數(shù)值:$\sum_{i=1}^5{{x_i}^2}=145$,$\sum_{i=1}^5{{x_i}{y_i}}=1270$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設(3x-2)6=a0+a1(2x-1)+a2(2x-1)2+a3(2x-1)3+a4(2x-1)4+a5(2x-1)5+a6(2x-1)6則a1+a3+a5=-$\frac{63}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),且其離心率為$\frac{\sqrt{2}}{2}$,F(xiàn)1、F2分別為橢圓C的左、右焦點.設直線l:y=kx+m與橢圓C相交于A,B兩點,O為坐標原點.
(I)求橢圓C的標準方程;
(II)當m=-2時,求△OAB的面積的最大值;
(III)以線段OA,OB為鄰邊作平行四邊形OAPB,若點Q在橢圓C上,且滿足$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應優(yōu)惠,標準如表:
消費次第第1次第2次第3次第4次≥5次
收費比例10.950.900.850.80
該公司從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如表:
消費次第第1次第2次第3次第4次第5次
頻數(shù)60201055
假設汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(3)設該公司從至少消費兩次,求這的顧客消費次數(shù)用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀念品,求抽出2人中恰有1人消費兩次的概率.

查看答案和解析>>

同步練習冊答案